
 
LIFT – Deliverable D3.1 

 
 

This project has received funding from the European Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement No 770747 

 

 

LIFT 
Low-Input Farming and Territories – Integrating knowledge for improving ecosystem based farming 

Research and Innovation action: H2020 – 770747 
Call: H2020-SFS-2016-2017 

Type of action: Research and Innovation Action (RIA) 
Work programme topic: SFS-29-2017 

Duration of the project: 01 May 2018 – 30 April 2022 
 
 
 

Farm technical-economic performance depending on the 
degree of ecological approaches 

 

Niedermayr A.1+, Kantelhardt J.1+*, Eckart L.1+, Kohrs M.1+, Schaller L.1+, Walder P.1+, Ayouba K.2, Bakucs Z.3, Ba-
ráth L.3, Barnes A.4, Britz W.5, Dakpo K. H.2, D’Alberto R.6, Desjeux Y.2, Féménia F.2, Fertő I.3, Gouta P.7, Hansson 
H.8, Heinrichs J.5, Huang W.8, Jeanneaux P.9 , Jin Y.10., Jouan J.2, Kilcline K.10, Konstantidelli V.7, Krupin V.11, Kuhn 

T.5, Lascano Galarza M. X.6, Latruffe L.2, Letort E.2, Manevska-Tasevska G.8, O’Donoghue C.12, Pahmeyer C.5, 
Raggi M.6, Ridier A.2, Ryan M.10, Sintori A.7, Thompson B.4, Toma L.4, Tzouramani I.7, Viaggi D.6, Zavalloni M.6, 

Zawalińska K.11 

 
1BOKU (Austria)+, 2INRAE (France), 3MTA KRTK (Hungary), 4SRUC (United Kingdom), 5UBO (Germany), 6UNIBO 
(Italy), 7DEMETER (Greece), 8SLU (Sweden), 9VetAgro Sup (France), 10Teagasc (Ireland), 11IRWiR PAN (Poland), 

12National University of Ireland (Ireland) 
 

 

 

* Deliverable leader – Contact: jochen.kantelhardt@boku.ac.at 
+ As Task 3.2 leader, BOKU carried out the overall editing of this deliverable and additionally to its contributions 
in sections 3 and 4 also wrote sections 1 (summary), 2 (introduction) and 6 (conclusion) 

 

DELIVERABLE D3.1 
 

Workpackage N°3 

Due date: M38 

Actual delivery date: 30/06/2021  

Dissemination level: Public 

mailto:jochen.kantelhardt@boku.ac.at


 
LIFT – Deliverable D3.1 

 
 

L I F T - H 2 0 2 0  P a g e  1 | 246 

 

About the LIFT research project 

Ecological approaches to farming practices are gaining interest across Europe. As this interest 
grows there is a pressing need to assess the potential contributions these practices may make, 
the contexts in which they function and their attractiveness to farmers as potential adopters. 
In particular, ecological agriculture must be assessed against the aim of promoting the im-
proved performance and sustainability of farms, rural environment, rural societies and econ-
omies, together. 

The overall goal of LIFT is to identify the potential benefits of the adoption of ecological farm-
ing in the European Union (EU) and to understand how socio-economic and policy factors im-
pact the adoption, performance and sustainability of ecological farming at various scales, from 
the level of the single farm to that of a territory. 

To meet this goal, LIFT will assess the determinants of adoption of ecological approaches, and 
evaluate the performance and overall sustainability of these approaches in comparison to 
more conventional agriculture across a range of farm systems and geographic scales. LIFT will 
also develop new private arrangements and policy instruments that could improve the adop-
tion and subsequent performance and sustainability of the rural nexus. For this, LIFT will sug-
gest an innovative framework for multi-scale sustainability assessment aimed at identifying 
critical paths toward the adoption of ecological approaches to enhance public goods and eco-
system services delivery. This will be achieved through the integration of transdisciplinary sci-
entific knowledge and stakeholder expertise to co-develop innovative decision-support tools. 

The project will inform and support EU priorities relating to agriculture and the environment 
in order to promote the performance and sustainability of the combined rural system. At least 
30 case studies will be performed in order to reflect the enormous variety in the socio-eco-
nomic and bio-physical conditions for agriculture across the EU. 

  



 
LIFT – Deliverable D3.1 

 
 

L I F T - H 2 0 2 0  P a g e  2 | 246 

 

Project consortium  
 

No. Participant organisation name Country 

1 INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’En-
vironnement FR 

2 VetAgro Sup – Institut d’enseignement supérieur et de recherche en alimenta-
tion, santé animale, sciences agronomiques et de l’environnement FR 

3 SRUC – Scotland’s Rural College UK 
4 Teagasc – Agriculture and Food Development Authority IE 
5 KU Leuven – Katholieke Universiteit Leuven BE 
6 SLU – Sveriges Lantbruksuniversitet SE 
7 UNIBO – Alma Mater Studiorum – Universita di Bologna IT 
8 BOKU – Universitaet fuer Bodenkultur Wien AT 
9 UBO – Rheinische Friedrich-Wilhelms – Universitat Bonn DE 

10 JRC – Joint Research Centre – European Commission BE 
11 IAE-AR – Institute of Agricultural Economics RO 

12 MTA KRTK – Magyar Tudományos Akadémia Közgazdaság – és Regionális 
Tudományi Kutatóközpont HU 

13 IRWiR PAN – Instytut Rozwoju Wsi i Rolnictwa Polskiej Akademii Nauk PL 
14 DEMETER – Hellinikos Georgikos Organismos – DIMITRA GR 
15 UNIKENT – University of Kent UK 
16 IT – INRAE Transfert S.A. FR 
17 ECOZEPT Deutschland DE 

 

  



 
LIFT – Deliverable D3.1 

 
 

L I F T - H 2 0 2 0  P a g e  3 | 246 

 

Table of contents 

 

About the LIFT research project ........................................................................................ 2 

Project consortium ........................................................................................................... 3 

Table of contents .............................................................................................................. 4 

List of acronyms and abbreviations ................................................................................... 6 

1 Summary ...................................................................................................................... 8 

2 Introduction ................................................................................................................. 8 

3 Empirical analyses of technical-economic farm performance .......................................18 

3.1 Technical efficiency of intensive and extensive technology in dairy farming in the Eu-
ropean Union (INRAE, BOKU and Teagasc) ......................................................................... 18 

3.2 Identifying heterogeneous technologies in Irish dairy farming (Teagasc) ................ 26 

3.3 Modelling heterogeneous technologies in the presence of sample selection: The case 
of dairy farms and the adoption of agri-environmental schemes in France (INRAE) ......... 35 

3.4 The economic performance of transitional and non-transitional organic dairy farms: 
A panel data econometric approach in Brittany (INRAE) .................................................... 40 

3.5 Investments, ecological approaches, environmental subsidies and the productivity of 
Italian farms (UNIBO)........................................................................................................... 51 

3.6 Technical and economic performance of arable farms in Sweden: does the degree of 
ecological approaches matter? (SLU) .................................................................................. 61 

3.7 Comparison of total factor productivity and its components between low input and 
conventional farming systems: the case of Hungarian cereal oilseed and protein (COP) crop 
producing farms (2011-2015) (MTA KRTK) .......................................................................... 73 

3.8 Differences in efficiency and productivity between conventional and organic farms: 
the case of Hungarian cereal oilseed and protein (COP) crop producing farms (2010-2015) 
(MTA KRTK) .......................................................................................................................... 78 

3.9 Farm technical and economic performance depending on the degree of ecological 
approaches: The case of olive farms in Crete, Greece (DEMETER) ..................................... 88 

3.10 Dynamics of productivity and efficiency performance in Poland’s dairy farms: com-
parative analysis by different degrees of ecological approaches (IRWiR PAN) ................ 100 

3.11 Productivity and efficiency of pig and poultry farms differentiated by degrees of eco-
logical approaches: the case of Poland (IRWiR PAN) ........................................................ 111 



 
LIFT – Deliverable D3.1 

 
 

L I F T - H 2 0 2 0  P a g e  4 | 246 

3.12 Innovation and eco-system based drivers of total farm factor productivity: assess-
ment based on LIFT large-scale survey (with emphasis on dairy and granivore farms in Po-
land) (IRWiR PAN) .............................................................................................................. 124 

3.13 Environmentally-friendly practices and economic performance in dairy and beef cat-
tle farming in France (INRAE and VetAgro Sup) ................................................................ 129 

3.14 Technical-economic performance of ecological farm types for matched cattle and 
sheep farms in Scotland (SRUC) ........................................................................................ 138 

4 Empirical analyses of technical-economic and environmental farm performance ....... 152 

4.1 Pesticide efficiency of French wheat producers under a stochastic frontier framework 
(INRAE) ............................................................................................................................... 152 

4.2 Technical-economic and environmental farm performance of dairy farms in Austrian 
case study regions Steyr-Kirchdorf and Salzburg und Umgebung (BOKU) ....................... 161 

4.3 Technical-economic and environmental performance of Austrian dairy farms (BOKU)
  .................................................................................................................................. 171 

4.4 Integrating a crop diversity index to eco-efficiency measurement for cropland farms 
in Sweden (SLU) ................................................................................................................. 182 

4.5 Estimating eco-efficiency of the olive farms in Crete, Greece (DEMETER) ............. 194 

5 Bioeconomic modelling ............................................................................................. 208 

5.1 Development of a bioeconomic model of pasture-based livestock farms (Teagasc) .... 
  .................................................................................................................................. 208 

5.2 Plot sizes and farm-plot distances as driver of economic farm performance along the 
degree of ecological approaches (UBO) ............................................................................ 216 

5.3 The impact of agri-environmental and climate measures on sustainable farm perfor-
mance – a German case study analysis (UBO) .................................................................. 226 

5.4 The impact of European policies on the uptake of ecological approaches – legume 
production on dairy farms challenged by European policy interaction (UBO and INRAE) 234 

6 Conclusion................................................................................................................. 245 

7 Deviations or delays .................................................................................................. 246 

8 Acknowledgements ................................................................................................... 246 

9 References ................................................................................................................ 247 

 

  



 
LIFT – Deliverable D3.1 

 
 

L I F T - H 2 0 2 0  P a g e  5 | 246 

 

List of acronyms and abbreviations 
AECM: agri-environmental and climate measures 

AES:  agri-environmental schemes 

AIC: Akaike Information Criteria 

ANOVA one-way analysis of variance 

ATT:  Average Treatment Effect on the Treated 

AWU: annual working units 

AWI: animal welfare index 

CAP:  Common Agricultural Policy 

CDI: crop diversity index 

CF: cash flow 

COP: cereal, oilseed and protein crops 

CRS: constant returns to scale 

CS: case study 

CV: coefficient of variation 

DEA:  Data Envelopment Analysis 

DMU: decision making unit 

DRS: decreasing returns to scale 

EC: efficiency change 

ESU: economic size unit 

EU:  European Union 

FADN:  Farm Accountancy Data Network 

FTE: full time equivalent 

GDP: gross domestic product 

GHG: greenhouse gas 

GM: gross margin 

GPM: gross profit margin 

GRA: growth rate of assets 

GWP: global warming potential 

ha: hectare 

HI: Herfindahl index 

IRS: increasing returns to scale 



 
LIFT – Deliverable D3.1 

 
 

L I F T - H 2 0 2 0  P a g e  6 | 246 

LCA: Life Cycle Assessment 

LCM: Latent Class Model 

LCSFA:  Latent Class Stochastic Frontier Analysis 

LCSFM: Latent Class Stochastic Frontier Model 

LFA:  less favoured area 

LSU: livestock unit 

MFA: main forage area 

MTR: metatechnology ratio 

OLS: Ordinary Least Squares 

RMEC: residual mix efficiency change 

ROA: return on assets 

RPM: Random Parameter Model 

RPSFA:  Random Parameter Stochastic Frontier Analysis 

SE: scale efficiency 

SEC: scale efficiency change 

SFA:  Stochastic Frontier Analysis 

TE: technical efficiency 

TEC: technical efficiency change 

TF: type of farming 

TFP:  total factor productivity 

TGR technology gap ratio 

TSG: traditional speciality guaranteed 

UAA: utilised agricultural area 

VRS: variable returns to scale 

WP: workpackage 

  



 
LIFT – Deliverable D3.1 

 
 

L I F T - H 2 0 2 0  P a g e  7 | 246 

1 Summary 
This document presents the results of Task 3.2 (farm technical-economic performance) in workpackage 
(WP) 3 (farm performance of ecological agriculture) of the LIFT project. The overall aim of Task 3.2 is 
to assess and compare technical-economic farm performance across the European Union (EU) depend-
ing on the degree of ecological approaches adopted by farms and analyse drivers, affecting their per-
formance. This requires an approach, which allows to consider regional specifics, while still allowing 
comparisons between different regions and countries. The deliverable thus consists of several aca-
demic papers, focussing on a range of different case studies, applying a wide range of methods, which 
can most generally be divided into empirical econometric approaches and bio-economic models. At 
the same time, all case studies follow a similar structure and include some common elements in terms 
of the applied methods, in particular a set of common indicators of technical-economic farm perfor-
mance was implemented in several papers. Various approaches to differentiate farms according to the 
degree of ecological approaches adopted were explored, including the LIFT farm typology developed 
in WP1 and other strategies. Overall, our results show that the wide variety of farm types and biophys-
ical, socio-economic and political framework conditions present in the EU matter: results of comparing 
technical-economic farm performance depending on the degree of ecological approaches adopted, as 
well as with respect to drivers of farm technical-economic performance, are heterogenous and vary 
between the different analyses. Therefore, this heterogeneity needs to be considered by policy makers 
and can most likely best be addressed by providing a policy framework, which provides the necessary 
flexibility to adjust measures to region-specific framework conditions in order to foster economic via-
bility of farms in the context of an ecological transition of EU agriculture. Building on the results of this 
deliverable and the other deliverables within WP3, Task 5.1 will in a next step undertake an integrative 
assessment of all performance dimensions jointly (technical-economic, environmental and private-so-
cial performance as well as employment effects at the farm level), uncovering associated trade-offs 
and synergies of an increasing uptake of ecological approaches in the EU farming sector, while WP6, 
in particular Task 6.2 and Task 6.3, will further investigate the role of policies in the development of 
ecological agriculture. 

2 Introduction 
This document presents the results of studies carried out in Task 3.2 (farm technical-economic perfor-
mance) in WP3 (farm performance of ecological agriculture) by LIFT partners, and has been edited by 
Niedermayr A., Kantelhardt J., Eckart L., Kohrs M., Schaller L. and Walder P. (BOKU) who have also 
written the summary, introduction and conclusion1. 

In the context of the Green Deal and the accompanying strategies like the Biodiversity strategy and 
the Farm to Fork Strategy, the EU is striving to achieve an increasing uptake of ecological approaches 
in its farming sector. In this context a crucial question is, how this affects the economic viability of and 
production of food, feed and fibre by farms within the EU, as these two aspects are also central aims 
of its Common Agricultural Policy (CAP). Also, the question arises, whether certain framework condi-
tions, which can be influenced by policies, could support this process by, e.g. compensating farmers 
for possible negative economic effects when adopting ecological approaches or by helping them to 
                                                           
1 We want to point out that each academic paper of LIFT partners is self contained. Therefore, in each academic paper (sec-
tions 3.1 to 5.4), the numbering of tables starts over from Table 1, and the references used in the paper are listed in a refer-
ence sub-section in the respective paper. By contrast, the references used in chapters 1 (summary), 2 (introduction) and 6 
(discussion) are listed in chapter 9 of this deliverable. 
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find successful win-win strategies, allowing them to maintain or even increase their economic perfor-
mance in the course of an ecological transition. 

Against this background, the overall aim of Task 3.2 is to assess and compare technical-economic farm 
performance across the EU depending on the degree of ecological approaches2 adopted by farms and 
analyse drivers, affecting their performance. In order to accomplish this, the wide variety of farm types 
and biophysical, socio-economic and political framework conditions present in the EU, need to be con-
sidered. This requires an approach, which allows to consider regional specifics, while still allowing com-
parisons between different regions and countries.  

The deliverable thus consists of 23 separate academic papers, focussing on a range of different case 
studies. However, at the same time, all case studies follow a similar structure and share some common 
elements in terms of the applied methods, in particular a set of common indicators of technical-eco-
nomic farm performance was implemented in several papers. An overview of all papers in this deliver-
able 3.1 is given in Table 1. 

The analyses cover a wide range of farm types such as specialist dairy farms, specialist cattle farms, 
specialist sheep farms, granivore farms, specialist field crop farms, including also specialist cereal 
oilseed and protein crop farms, specialist olive farms, among others. 

In terms of the identification of the degree of ecological approaches adopted by farms, the analyses 
explored a wide range of approaches. Several papers applied the LIFT farm typology protocols, devel-
oped in WP1 (Rega et al., 2019; Rega et al., 2021; Thompson et al., 2021), while others identified other 
nomenclatures, input indicators, key farming practices or farming systems (proxied by combinations 
of farming practices), better suited for their particular analyses.  

Apart from academic papers of individual LIFT partners in their respective case study regions, some 
collaborative analyses were also developed, resulting in cross-country papers, identifying and analys-
ing heterogenous production technologies across the French, Irish and Austrian dairy sector using sto-
chastic frontier (section 3.1) estimated with an R-package that was developed within LIFT (Dakpo et 
al., 2021), and another paper investigating the impact of key policy measures affecting legume pro-
duction on the uptake of legume production by farms in Germany and France with the bio-economic 
model FarmDyn (Britz et al., 2019) (section 5.4). 

The deliverable is structured into three main parts:  

• The first part (chapter 3) consists of empirical analyses of technical-economic farm performance.  

• The second part (chapter 4) contains empirical analyses, which additionally to technical-economic 
farm performance also address Deliverable 3.3 (Van Ruymbeke et al., 2021) (farm environmental 
performance according to the degree of ecological approaches).  

• The third part (chapter 5) includes papers which are based on bio-economic models, which again 
in most cases go beyond purely technical-economic farm performance. 

In chapters 3 and 4, analyses are mostly carried out with econometric methods. The data sources used 
range from secondary data like EU/national Farm Accountancy Data Network (FADN) data or national 

                                                           
2 Ecological practices are understood in LIFT as low-input practices and/or practices that are environmentally friendly. The 
originality of LIFT in this view is not to focus on a specific type of ecological approaches, but to cover the whole continuum of 
farming approaches, from the most conventional to the most ecological, including the widest range of ecological approaches. 
This comprises the existing nomenclatures such as organic farming, low-input farming, agroecological farming, etc. It also 
encompasses approaches that are not yet part of a nomenclature, but that can be identified with various criteria such as 
management practices, on-farm diversification etc. Thus, conventional practices mean non-ecological practices. 



 
LIFT – Deliverable D3.1 

 
 

L I F T - H 2 0 2 0  P a g e  9 | 246 

farm surveys to primary data obtained from the LIFT large-scale farmer survey (Tzouramani et al., 
2019) in the respective case study regions. In particular FADN data is very well suited for analyses in 
this context, as it is based on a representative sample of commercial EU farms and provides harmo-
nised economic data.  

In general, each individual paper mostly focussed on one main method to assess farm performance. 
These main methods included methods of total factor productivity (TFP) and technical efficiency 
analysis such as Data Envelopment Analysis (DEA), Stochastic Frontier Analysis (SFA), Latent Class 
Stochastic Frontier Analysis (LCSFA) or Random Parameter Stochastic Frontier Analysis (RPSFA). 
More background information on these methods can be found in the respective papers in this deliver-
able and the underlying literature (e.g. Coelli et al., 2005; Greene, 2005; Orea and Kumbhakar, 2004). 

Additionally, in most studies, various further indicators of farm technical-economic performance were 
calculated. In order to provide some common framework for these indicators, a set of common indi-
cators of technical-economic farm performance was developed within Task 3.2, based on the previous 
work in Milestone 17 (Walder et al., 2019) and Milestone 18 (Schaller et al., 2020). The indicators 
mostly cover profitability, productivity and financial stability. In terms of profitability, these indicators 
allow for example to explore the effect of opportunity costs of production factors and the contribu-
tions of public payments and subsidies to profitability. In terms of productivity, partial quantitative 
productivity indicators, suitable to visualize differences in productivity associated with individual in-
puts in the production process were used. In some papers, additional indicators to those mentioned 
above were developed and applied as well. 

Depending on the aim of and data available for the respective analysis, different methods to compare 
performance according to the degree of ecological approaches adopted by farms were used. In par-
ticular with small datasets, based on data from the LIFT large-scale farmer survey, simple parametric 
or non-parametric tests were used like t-test, ANOVA, Mann-Whitney U test, or Wilcoxon test. How-
ever, in several papers, further methods, such as matching and metafrontiers of production possibil-
ities were explored, enhancing such comparisons by addressing possible biases and improving the 
identification of performance gaps.  

A final central aspect of most papers was the assessment of drivers of performance levels and perfor-
mance gaps with econometric methods. The analysed drivers comprise endogenous drivers such as 
farmers’ age, gender, education, succession status or various indicators of farm structure, and exoge-
nous drivers, like for example agronomic and economic conditions.  

While the analyses in the first two parts use observational data of farms to derive inferences, based 
on what happened in the past, the bio-economic models developed and applied in the third part of 
this deliverable’s empirical analyses, model farms in a bottom-up approach. The advantage of such 
models is that they can be used to answer various ‘what if’ questions and to provide a detailed assess-
ment of on-farm mechanisms of the adoption of a higher degree of ecological approaches through the 
implementation of scenarios. For example, the models consider economic and legislative context (e.g. 
nitrate directive) and other boundary conditions (e.g. farm-plot-distance and plot size, different bio-
physical site conditions). Additionally, one paper based on bio-economic modelling explored the com-
mon indicators of technical-economic farm performance described above as well as a wide range of 
environmental and labour performance indicators to modelled arable and dairy farms in order to as-
sess the impact of agri-environmental and climate measures on sustainable farm performance.  

The further structure of the deliverable is as follows: the next chapter presents the academic papers 
dedicated to empirical analyses of technical-economic farm performance, chapter 4 contains the aca-
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demic papers based on empirical analyses, which address this Deliverable 3.1 (farm technical-eco-
nomic performance) and Deliverable 3.3 (farm environmental performance) simultaneously, and chap-
ter 5 shows academic papers based on bio-economic models, which again in most cases go beyond 
purely technical-economic farm performance. Finally, after these sections, chapter 6 provides conclud-
ing remarks. 
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Table 1: Overview of academic papers, implemented in the Deliverable 

Chap
ter Paper LIFT  

partner 
Case study 
region 

Farm 
types 

Degree of ecolog-
ical approaches of 
farms 

Methodological approach Short summary of main findings 

 Empirical analyses of technical-economic farm performance 

3.1 

Technical efficiency of in-
tensive and extensive 
technology in dairy farm-
ing in the European Union 

INRAE, 
Teagasc, 
BOKU 

France, Ire-
land, Aus-
tria 

Specialist 
dairy 
farms 

Extensive and in-
tensive groups, 
based on LCSFM 

LCSFM, integrating an assess-
ment of drivers of farm perfor-
mance. 

Intensive and extensive production tech-
nologies can be identified with easily 
measurable separating variables in the 
LCSFM. Extensive farms perform worse 
compared to intensive farms and subsi-
dies negatively affect performance for 
extensive farms and have no effect on in-
tensive farms. 

3.2 
Identifying heterogene-
ous technologies in Irish 
dairy farming 

Teagasc Ireland 
Specialist 
dairy 
farms 

Extensive and in-
tensive groups, 
based on LCSFM 

LCSFM, integrating an assess-
ment of drivers of farm perfor-
mance, calculation of various 
additional performance indica-
tors (e.g. profitability, productiv-
ity). 

Intensive farms are more efficient than 
extensive farms. Additional indicators 
also show better performance of inten-
sive farms. 

3.3 

Modelling heterogeneous 
technologies in the pres-
ence of sample selection: 
The case of dairy farms 
and the adoption of agri-
environmental schemes 
in France 

INRAE France 
Specialist 
dairy 
farms 

Farm with agri-en-
vironmental 
schemes and 
farms without, 
both further di-
vided in an inten-
sive and extensive 
group, based on 
LCSFM 

Sample selection model and 
LCSFM, integrating an assess-
ment of drivers of farm perfor-
mance. 

Results show technological heterogene-
ity of farms. Intensive dairy farms are 
more efficient. Operational subsidies in-
crease efficiency for intensive farms and 
decrease it for extensive farms. 

3.4 

The economic perfor-
mance of transitional and 
non-transitional organic 
dairy farms: A panel data 
econometric approach in 
Brittany 

INRAE Brittany 
Specialist 
dairy 
farms 

Conventional corn 
and grassland sys-
tems, organic 

Calculation of various economic 
and financial performance indi-
cators; linear mixed effects 
model. 

Organic farms show on average better 
economic and financial performance 
than the other systems, but this requires 
a certain minimum farm size. 
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3.5 

Investments, ecological 
approaches, environmen-
tal subsidies and the 
productivity of Italian 
farms 

UNIBO 

Italy (dif-
ferentiated 
by various 
regions) 

All farm 
types 

Conventional, low 
input, integrated, 
organic, low input 
+ integrated, low 
input + organic, 
organic + inte-
grated, low input 
+ organic + inte-
grated 

Estimation of Levinsohn and Pe-
trin TFP; investigation of correla-
tional relationship to capture 
the effects of private investment 
and environmental subsidies 
and further controls on TFP; cal-
culation of additional partial 
productivity indicators. 

Shifting from conventional to more eco-
logically-sound type of farming exhibits 
trade-offs in terms of reduction in 
productivity, both total and partial. These 
trade-offs can, however, can be miti-
gated by investments. Compared to pre-
vious studies, results support the positive 
relationship between environmental 
subsidies and farms’ TFP and average 
product of land. 

3.6 

Technical and economic 
performance of arable 
farms in Sweden: does 
the degree of ecological 
approaches matter? 

SLU Sweden 
Specialist 
field crop 
farms 

Crop diversity in-
dex, organic farm-
ing, crop rotation 

SFA, integrating an assessment 
of drivers of farm performance 
(subsidies, crop diversity index, 
organic farming, crop rotation, 
policy shock), calculation of var-
ious additional performance in-
dicators (e.g. profitability, 
productivity). 

Farms in southern Sweden are more effi-
cient than those in the north. Subsidies 
positively affect efficiency, while results 
for ecological approaches are mixed. For 
most additional performance indicators, 
conventional farms perform better than 
organic farms. 

3.7 

Comparison of total fac-
tor productivity and its 
components between 
Low input and conven-
tional farming systems: 
the case of Hungarian Ce-
real Oilseed and Protein 
(COP) crop producing 
farms (2011-2015) 

MTA 
KRTK Hungary 

Specialist 
cereal, 
oilseed 
and pro-
tein crop 
farms 

Conventional, low 
input 

RPSFM, allowing for hetero-
genous production technolo-
gies; Törnquist-Theil TFP index. 

TFP is smaller for low input farms. Tech-
nological change is similar for both 
groups, but technical and scale efficiency 
is lower for low input farms. 

3.8 

Differences in efficiency 
and productivity between 
conventional and organic 
farms: the case of Hun-
garian cereal oilseed and 
protein (COP) crop pro-
ducing farms (2010-2015) 

MTA 
KRTK Hungary 

Specialist 
cereal, 
oilseed 
and pro-
tein crop 
farms 

Conventional,  
organic 

RPSFM, allowing for hetero-
genous production technologies 
and including an econometric 
assessment of drivers of farm 
performance; Törnquist-Theil 
TFP index; matching; calculation 

No significant differences in performance 
between conventional and organic farms, 
but low number of organic farms in sam-
ple is a limitation.  



 
LIFT – Deliverable D3.1 

 
 

L I F T - H 2 0 2 0  P a g e  13 | 246 

of various additional perfor-
mance indicators (e.g. profitabil-
ity, productivity). 

3.9 

Farm technical and eco-
nomic performance de-
pending on the degree of 
ecological approaches:  
The case of olive farms in 
Crete, Greece 

DEME-
TER Crete 

Specialist 
olive 
farms 

Conventional, low 
input, organic 

DEA + second stage regression 
analysis of drivers of farm per-
formance; calculation of various 
additional performance indica-
tors (e.g. profitability, productiv-
ity). 

A transition to ecological practices (low 
input) can improve farm efficiency. 

3.10 

Dynamics of productivity 
and efficiency perfor-
mance in Poland’s dairy 
farms: comparative anal-
ysis by different degrees 
of ecological approaches 

IRWiR 
PAN Poland 

Specialist 
dairy 
farms 

Conventional, in-
tegrated, low in-
put-integrated, 
mixed, changea-
bles 

DEA + Färe-Primont productivity 
change index; metafrontier of 
production possibilities; calcula-
tion of various additional perfor-
mance indicators (e.g. profitabil-
ity, productivity). 

Farms adopting ecological approaches 
tend to decrease over time. TFP increases 
over time for conventional, integrated 
and changeable farms, but decreased for 
low-input-integrated and mixed farms.  

3.11 

Productivity and effi-
ciency of pig and poultry 
farms differentiated by 
degrees of ecological ap-
proaches: the case of Po-
land 

IRWiR 
PAN Poland 

Specialist 
granivore 
farms 

Conventional, in-
tegrated, change-
ables 

DEA + Färe-Primont productivity 
change index; metafrontier of 
production possibilities; calcula-
tion of various additional perfor-
mance indicators (e.g. profitabil-
ity, productivity). 

Farms adopting ecological approaches 
tend to decrease over time. TFP increases 
over time for changeable and conven-
tional farms, while it decreased for inte-
grated farms. 

3.12 

Innovation and eco-sys-
tem based drivers of total 
farm factor productivity: 
assessment based on LIFT 
large-scale survey (with 
emphasis on dairy and 
granivore sectors in Po-
land) 

IRWiR 
PAN Poland 

Field 
crop, 
horticul-
ture, 
grani-
vore, 
dairy and 
mixed 
farms 

- 

Identification of drivers (adop-
tion of sources of innovation 
and ecosystem services), which 
are hypothesised to influence 
TFP of farms and comparison of 
the adoption of these drivers by 
farm types. 

8 indicators, describing sources of infor-
mation and 24 indicators, describing pro-
vision of ecosystem services were identi-
fied. Adoption of these indicators varies 
by farm type. 

3.13 
Environmentally-friendly 
practices and economic 
performance in dairy and 

INRAE 

Brittany, 
Sarthe, 
Puy-de-
Dôme 

Specialist 
dairy and 
beef cat-
tle farms 

5 typologies to de-
fine ecological 
farms: usage of 
antibiotics only 

Calculation of various perfor-
mance indicators (e.g. profitabil-
ity, productivity); t-tests and 
matching. 

Heterogenous results, when comparing 
performance of the different ecological 
and non ecological farm types. It is im-
portant to take into account the different 
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beef cattle farming in 
France 

for treatment, ag-
roforestry, agri-
environment 
schemes, conver-
sion to organic, 
organic,  

structure of ecological and non-ecologi-
cal farms when comparing their perfor-
mance  

3.14 

Technical-economic per-
formance of ecological 
farm types for matched 
cattle and sheep farms in 
Scotland 

SRUC Scotland 

Cattle 
farms 
and 
sheep 
farms 

Low input, high in-
put, low integra-
tion, high integra-
tion, organic 

Slack-based DEA + second stage 
analysis of drivers of farm per-
formance; Wilcoxon test, 
matching; calculation of various 
additional performance indica-
tors (e.g. profitability, productiv-
ity). 

The development of low-input livestock 
farms could be beneficial from an eco-
nomic and narrow environmental per-
spective. Lower input farms appear to be 
more efficient and given their low-input 
nature are also likely to have lower 
greenhouse gas (GHG) emissions. The 
benefits of the development of inte-
grated livestock farms is less clear. Or-
ganic farms are associated with high lev-
els of efficiency even in the highly-inte-
grated sample so at least relatively the 
organic price premium, or links to organic 
associations helped to improve effi-
ciency. 

 Empirical analyses of technical-economic and environmental farm performance 

4.1 

Pesticide efficiency of 
French wheat producers 
under a stochastic fron-
tier framework 

INRAE 

Northeast 
France 
(Marne, in 
particular) 

Specialist 
field crop 
farms 

Pesticide usage SFA, using pesticide usage as a 
damage control input. 

Pesticide usage can be reduced to some 
extent without affecting wheat yield. 
Crop diversification can positively affect 
impact damage abatement, but only for 
low levels of pesticide use. 

4.2 

Technical-economic and 
environmental farm per-
formance of dairy farms 
in Austrian case study re-
gions Steyr-Kirchdorf and 
Salzburg und Umgebung 

BOKU 

Steyr-
Kirchdorf, 
Salzburg 
und Umge-
bung 

Specialist 
dairy 
farms 

Conventional, 
haymilk, organic, 
organic haymilk 

DEA + second stage regression 
analysis of drivers of farm per-
formance; calculation of various 
additional performance indica-
tors (e.g. profitability, productiv-
ity, environmental performance 

Organic and organic haymilk farms can 
compensate economic drawbacks com-
pared to conventional farms through 
higher subsidies as well as market prices 
for their products and perform better in 
terms of environmental performance 
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indicators); Mann-Whitney U 
test; Kruskal-Wallis test 

4.3 

Technical-economic and 
environmental perfor-
mance of Austrian dairy 
farms 

BOKU Austria 
Specialist 
dairy 
farms 

Conventional, in-
tegrated, organic 
integrated-or-
ganic 

DEA + second stage regression 
analysis of drivers of farm per-
formance; matching and meta-
frontier of production possibili-
ties; calculation of various addi-
tional performance indicators 
(e.g. profitability, productivity, 
environmental performance in-
dicators); t-test; ANOVA. 

Organic and integrated-organic haymilk 
farms can compensate economic draw-
backs compared to conventional farms 
mostly through higher subsidies and per-
form better in terms of environmental 
performance 

4.4 

Integrating a crop diver-
sity index to eco-effi-
ciency measurement for 
cropland farms in Sweden 

SLU Sweden Crop land 
farms Crop diversity 

Eco-efficiency with a directional 
distance function and crop di-
versity index (CDI) and Her-
findahl index (HI) in the model + 
second-stage regression. 

U shape relationship between eco-effi-
ciency and CDI (measured two years ago). 
Eco-efficiency was higher after 2013 
which is the year of CAP reform with 
mandatory greening. 

4.5 
Estimating eco-efficiency 
of the olive farms in 
Crete, Greece 

DEME-
TER 

Crete 
(Greece) 

Olive 
farms 

Organic farming 
and non organic 
farming; conser-
vation farming 
and non-conser-
vation farming 

Eco-efficiency with DEA and only 
environmental inputs are used 
in the inputs; second-stage re-
gression. 

Conservation farms have the lowest eco-
efficiency on average. The actual reason 
for implementing environmentally-
friendly farming practices may be farm-
ers’ focus on quality products and not on 
environmental concerns per se. Subsidies 
reduce eco-efficiency. 

 Bioeconomic modelling 

5.1 
Development of a bioeco-
nomic model of pasture-
based livestock farms 

Teagasc Ireland Sheep 
farms 

Lowland and hill 
farms 

Bio-economic model, repre-
sentative for the population of 
Irish sheep farms, allowing to in-
vestigate technical-economic 
performance (in particular prof-
itability, cost-indicators and in-
dicators of meat production) 
and environmental perfor-
mance (in particular carbon 
footprint and land occupation). 

Results highlight the differential perfor-
mance of hill and lowland production sys-
tems, with lowland systems demonstrat-
ing higher output and profitability, less 
reliance on support payments, higher 
overall farm emissions but lower emis-
sions per unit output. 
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5.2 

Plot sizes and farm-plot 
distances as driver of eco-
nomic farm performance 
along the degree of eco-
logical approaches 

UBO Western 
Germany  

Arable 
farms, 
pig fat-
tening 
farms, 
dairy 
farms 

Conventional, or-
ganic 

Bio-economic model, allowing a 
detailed assessment of the con-
version to organic farming on 
technical-economic perfor-
mance, considering in particular 
the effect of varying farm-plot-
distance and plot size. 

Organic farms are more profitable, but 
mostly only if subsidies are considered. In 
particular organic livestock farms have 
higher labour requirements. Larger plot 
size and smaller farm-plot distances in-
crease profitability and decrease labour 
requirements. 

5.3 

The impact of agri-envi-
ronmental and climate 
measures on sustainable 
farm performance – a 
German case study analy-
sis 

UBO 

Western 
Germany 
(North-
Rhine-
Westpha-
lia) 

Arable 
farms, 
dairy 
farms 

Conventional non 
agri-environmen-
tal and climate 
measure farms, 
conventional agri-
environmental 
and climate meas-
ure farms 

Comparative-static version of 
the bio-economic model 
FarmDyn, assessing technical 
economic, environmental as 
well as employment perfor-
mance of farms. 

The implementation of agri-environmen-
tal and climate measures improves eco-
nomic and environmental sustainability 
of farms while slightly reducing labour re-
quirements. However, this also increases 
dependency on subsidies and decreases 
production of food, feed and fibre. 

5.4 

The impact of European 
policies on the uptake of 
ecological approaches – 
legume production on 
dairy farms challenged by 
European policy interac-
tion 

UBO, 
INRAE 

France 
(Pays de la 
Loire), Ger-
many 
(North-
Rhine-
Westpha-
lia) 

Dairy 
farms 

Greening regula-
tion and various 
measures sup-
porting for leg-
umes 

Comparative-static version of 
the bio-economic model 
FarmDyn, investigating the tech-
nical-economic and environ-
mental performance of farms 
under various scenarios regard-
ing voluntary coupled support 
for legumes and nitrate di-
rective. 

Legume production can be increased to 
some extent already by a low voluntary 
coupled support, while this does not lead 
to any substantial environmental bene-
fits based on the investigated indicators. 
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3 Empirical analyses of technical-economic farm performance 

3.1 Technical efficiency of intensive and extensive technology in dairy farming in the 
European Union (INRAE, BOKU and Teagasc) 

Laure Latruffe 1, Andreas Niedermayr 2, Yann Desjeux 1, K Herve Dakpo 3,4, Kassoum Ayouba 5, Lena 
Schaller 2, Jochen Kantelhardt 2, Yan Jin 6, Kevin Kilcline 6, Mary Ryan 6, Cathal O’Donoghue 7  
  
1 INRAE, GREThA, Université de Bordeaux, Pessac, France  

2 Institute of Agricultural and Forestry Economics, Department of Economics and Social Sciences, Uni-
versity of Natural Resources and Life Sciences, Vienna (BOKU), Feistmantelstraße 4, AT-1180 Vienna, 
Austria  

3 Université Paris-Saclay, INRAE, AgroParisTech, Economie Publique, 78850, Thiverval-Grignon, France  

4 Agricultural Economics and Policy Group, ETH Zürich, Sonneggstrasse 33, CH-8092 Zürich, Switzerland  

5 INRAE, Territoires, Clermont-Ferrand, France  

6 Teagasc Rural Economy and Development Centre, Mellows Campus, Athenry, Co. Galway, Ireland  

7 National University of Ireland, Galway, Ireland 

 

3.1.1 Introduction 

Our study illustrates how latent class modelling combined with stochastic frontier analysis can be used 
to help policy-making for environmental-friendly “extensive” agriculture in the European Union (EU), 
through: identification of already extensively producing farms at a large spatial scale; comparison of 
intensive and extensive farms in terms of economic performance to assess the level of trade-offs be-
tween economic performance and environmental sustainability; and investigation of agri-political con-
ditions required for extensive farms to be economically successful. 

3.1.2 Description of case study region 

Our study is applied to dairy farms and to three EU countries, Ireland, France and Austria. Ireland is 
one of Europe’s leading low-cost dairy producers, characterised by very productive grasslands. This 
has led to the broad adoption of a seasonal production system with compact spring calving so that milk 
production matches grass growth. Organic dairy production is a niche subsector contributing 11% of 
national milk supply from 62 organic dairy farms (out of a total of over 18,000) with an average herd 
size of 79 cows in 2019. This is in comparison to a national population of 16,700 specialist dairy farms 
(12% of all farms) with an average herd size of 80 cows (Donnellan et al., 2020).  

In France there are not many organic dairy farms either. Although France is the second biggest pro-
ducer of cow milk in the EU, with 17% of the EU milk, behind Germany (23%) (Eurostat, 2021), only 4% 
of the milk is produced under organic farming practices (certified or in conversion) (Agreste, 2020). 
Milk is produced in France in three main areas: around half of the national production comes from 
plain areas in Western France where dairy farms are intensive with a higher use of maize silage; one 
third is produced by mixed crop and livestock farms in northeastern France, while the rest is produced 
by farms in the mountains (Guesdon and Perrot, 2010). 
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Dairy farms in Austria are mainly located in the Alps, where less favourable climatic conditions and 
topography result in a comparably small average farm size (31 hectares and 39 livestock units). Never-
theless, Austrian dairy farms are highly productive and are characterised by a high share of organic 
production (25%) and rely on additional income sources such as forestry (Federal Ministry of Agricul-
ture, Regions and Tourism, 2020a). With respect to the adoption of ecological approaches, Austria has 
the highest share of organic farms in the EU (18.3% in 2017) and the share of organic farms with milk 
delivery is even higher (25.5% in 2017) (Federal Ministry of Agriculture, Regions and Tourism, 2020b). 

3.1.3 Data 

We use data from the Farm Accountancy Data Network (FADN), a harmonised database of bookkeep-
ing information for commercial farms across the EU. This article focuses on specialist dairy farms, for 
which at least two thirds of their standard output is obtained from dairy activity. The sample used 
contains a total of 4,316 farms, with, for the years 2014 and 2015 respectively: 326 and 324 Irish farms; 
1,037 and 1,019 French farms; and 808 and 802 Austrian farms. In this analysis, all monetary values 
are deflated with real price indices obtained from Eurostat.3 

Table 1 describes the pooled sample used, as well as the three countries’ sub-samples. Dairy farms in 
the Austrian sub-sample are smaller than Irish and French farms in terms of land area (31 ha of UAA 
vs. 63 and 102 ha), mainly located in mountainous areas and more than one quarter (28%) are organic 
farms. Despite their small size in terms of output, Austrian farms have a higher milk yield than Irish 
farms, and a higher productivity per ha and per livestock unit (LSU) than Irish and French farms. They 
receive a much higher value of operational subsidies, 623 vs. 308 (France) and 164 (Ireland) Euros per 
LSU. The operational subsidies considered here are Common Agricultural Policy (CAP) subsidies exclud-
ing investment subsidies, and include production direct and coupled subsidies as well as subsidies from 
AES and compensating subsidies for being located in Less Favoured Areas (LFA). The latter are moun-
tainous areas or areas with natural constraints. The high value of subsidies per hectare in Austria is 
explained with AES, organic and LFA payments, as well as other second pillar payments, as Austria 
offers a very broad and well accepted rural development program with high participation rates of 
farms.  

On average dairy farms in the Irish sub-sample have a greater herd size and a higher livestock stocking 
rate in terms of the number of LSU per ha of forage area than their French and Austrian counterparts. 
Very few of the Irish sample farms are organic farms, reflecting a national population of less than 30 
certified organic dairy farms in the reference period. The Irish farms on average apply more chemical 
fertilisers per hectare than French and Austrian farms, but much less crop protection products. This is 
reflected in the grass based production system, with 98% of land area under permanent grassland, and 
higher stocking rates. The grass based production system aims to maximise low cost grass utilisation 
and milk solids output per hectare. This is illustrated in Irish farms having the lowest milk yield per cow 
but the highest total farm output per labour unit, while demonstrating the lowest costs per litre. These 
farms receive the lowest amount of subsidies per LSU on average, due to low prevalence of organic 
dairy farms, lower AES payments and the high LSU per hectare. 

French dairy farms in the sub-sample have the highest UAA (102 ha) but the lowest capital value on 
average. This is compensated by the highest cost of external capital through contract work. They use 
the highest level of intermediate consumption and crop protection products per ha compared to farms 

                                                           
3 Index price of agricultural goods output, including fruits and vegetables; index price of goods and services currently con-
sumed in agriculture; index price of goods and services contributing to agricultural investment. (https://ec.europa.eu/euro-
stat/web/main/data/database)  

https://ec.europa.eu/eurostat/web/main/data/database
https://ec.europa.eu/eurostat/web/main/data/database
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in the Irish and Austrian sub-samples. The French sub-sample’s farms have the highest average share 
of rented area in UAA (85%), one reason being that land operated by farms with associates is often 
owned by the associates who rent it out to the farm. A lower share of farms in the French sub-sample 
is located in LFA compared to the Irish and Austrian sub-samples. Only 5% of the French sub-sample 
are organic farms, in line with the national statistics. 

3.1.4 Methodology 

We use here the latent class stochastic frontier model (LCSFM) to classify farms into extensive and 
intensive technologies. The LCSFM allows an endogenous categorisation of farms into classes of more 
or less intensive farms, represented by different production technologies, while simultaneously esti-
mating the technical efficiency of each class (see for example Orea and Kumbhakar, 2004). Moreover, 
the probability of adopting a particular technology can be based on separating variables, in our case 
selected farms’ characteristics, and the model also allows to estimate the effects of drivers of ineffi-
ciency. 

With the R package {sfaR} (Dakpo et al., 2021a), we apply the LCSFM to the whole sample, pooling the 
three countries and the years. A Cobb-Douglas specification is used for the technology, with total farm 
output in Euros as the single output and five inputs: UAA in ha, total farm labour in AWU, herd size in 
LSU, intermediate consumption in Euros, and capital in Euros. Intermediate consumption includes var-
iable inputs used for production, such as animal feed, seeds, pesticides, fertilisers, water, and electric-
ity. Capital is measured here as the value of assets, excluding the value of livestock (since it is already 
accounted for in the herd size input) and the value of agricultural land (accounted for in UAA input). In 
the Cobb-Douglas production function, we also include a time dummy (year 2014) and two country 
dummies to control for country-specific and time-specific effects. 

Separating variables for the identification of different production technologies are selected based on 
the literature on intensive vs. extensive technology in dairy farming (e.g. Kellermann and Salhofer, 
2014; Dakpo et al., 2021b), data availability and on technological characteristics relevant in all the 
three countries studied. Two variables are used in our final model: the stocking density, calculated as 
the number of LSU per ha of forage area, and the permanent pasture ratio in UAA. Additionally, we 
also include a time dummy for the year 2014. 

As regards inefficiency drivers, they are selected based on the rich existing literature and particularly 
articles on dairy farms in EU countries (Latruffe et al., 2017; Bradfield et al., 2020). Specifically, we use 
the ratio of hired labour in total farm labour, the ratio of rented land in UAA, the value of CAP opera-
tional subsidies per LSU and two country dummies for Ireland and France. 
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Table 1: Descriptive statistics of the sample used pooled over the period 2014-2015 

 Three countries pooled Ireland France Austria 
Number of observations 4,316 650 2,056 1,610 
Share of farms located in LFA 66% 64% 49% 90% 
Share of farms located above 600m 31% 0% 20% 57% 
Share of fully organic certified farms 13% 0% 5% 28% 
Share of partly organic farms or in conversion 1% 0% 2% 1% 
 Mean Std. dev. Mean Std. dev. Mean Std. dev. Mean Std. dev. 
Total farm output (Euros) 164,810 118,873 179,373 108,961 210,484 131,931 100,603 63,249 
Total farm labour (AWU) 1.94 0.88 1.67 0.7 2.01 1.05 1.95 0.65 
Herd size (LSU) 89 66 129 72 115 63 39 23 
Intermediate consumption (Euros) 108,106 85,331 109,541 70,266 148,434 94,797 56,026 35,573 
Capital excluding herd and agricultural land (Eu-
ros) 427,598 284,177 444,709 285,743 348,101 256,090 522,209 287,622 
Milk yield (litres per dairy cow) 6,517 1,572 5,508 1,036 6,818 1,615 6,540 1,530 
Total farm output per ha (Euros) 2,778 1,406 2,867 964 2,162 933 3,530 1,661 
Total farm output per LSU (Euros) 2,063 866 1,376 280 1,835 595 2,630 973 
Total farm output per AWU (Euros) 86,383 47,703 108,027 48,333 106,879 43,723 51,472 27,805 
Stocking density (LSU/ha of forage area) 1.64 0.62 2.12 0.57 1.56 0.61 1.55 0.57 
Ratio of permanent grassland in UAA 0.86 0.16 0.98 0.06 0.79 0.16 0.89 0.15 
Costs of fertilisers per ha of UAA (Euros) 99 88 228 87 104 62 42 54 
Costs for crop protection per ha of UAA (Euros) 28 35 8 12 47 39 11 21 
Operational subsidies per LSU (Euros) 404 269 164 65 308 126 623 298 
Including AES subsidies per LSU (Euros) 39 88 9 24 15 38 82 125 
Ratio of hired labour in total labour 0.07 0.14 0.11 0.17 0.09 0.16 0.02 0.07 
Ratio of rented land in UAA 0.54 0.38 0.23 0.21 0.83 0.27 0.30 0.25 

Notes: Labour is measured with annual working units (AWU) which are full-time equivalents. 
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3.1.5 Results 

We estimated the model for different numbers of classes. In the final specification we decided to con-
strain the model to identify only two classes, as this increased the visibility and made the illustration 
more straightforward. 

Table 2 presents the estimation results regarding the separating variables, the production functions, 
and the inefficiency drivers for a model with two classes. The coefficients for the separating variables 
show that a higher stocking density increases the probability of belonging to class 1 while the ratio of 
permanent grassland in total UAA decreases it. Therefore, class 1 contains farms that are more inten-
sive on average in terms of these two indicators, than farms in class 2. We will therefore label class 1 
the intensive class and class 2 the extensive class in what follows. Each class makes up about 50% of 
all farms. Looking at the composition of the classes by country, a higher share of farms from Ireland 
and Austria are in the extensive class: 56% and 61% respectively, compared to French farms (40%).  

For both classes, in the production function the production inputs are significant and have the ex-
pected sign, except for UAA. This suggests that land is not a limiting input for both classes, including 
the intensive class. The intensive class, on average, shows a higher technical efficiency (with mean 
efficiency 0.937) than the extensive class (with mean efficiency 0.809) (the efficiency means are signif-
icantly different at the 1%-level). The intensive class also has higher elasticities of labour and capital 
inputs, higher milk yields and a higher farm income in comparison to the extensive class, which has in 
turn higher livestock and variable inputs’ elasticities. Additionally, the intensive class is characterised 
by a higher livestock density, a lower share of permanent grassland, higher usage of chemical inputs 
and lower AES subsidies per LSU. As underlined by Kellermann and Salhofer (2014), permanent grass-
land is less productive than silage in terms of energy content, which may partly explain the lower per-
formance of the extensive class compared to the intensive class in the results here. One reason for the 
lower AES subsidies per LSU of the intensive class may be organic AES, since the extensive class has a 
higher share of organic farms than the intensive class (16% vs. 10%). 

Results also confirm that the three countries have different production systems: while Irish farms 
demonstrate the highest total farm output per AWU and lower costs of production (Table 1), when all 
factors of production are taken into account in the efficiency analysis (Table 2), they are shown to be 
less productive than French and Austrian farms, as indicated by the country dummies. The time dummy 
shows for both classes that 2014 was a more productive year than 2015. 

With respect to drivers of inefficiency, a negative sign reveals a negative impact of the driver on tech-
nical inefficiency and thus a positive impact on technical efficiency. Our results indicate that using hired 
labour increases technical efficiency only in the extensive class, suggesting a positive effect of exten-
sive farming in rural areas and confirming the finding of Bradfield et al. (2020) for Irish dairy farms and 
Latruffe et al. (2017) for dairy farms in nine EU countries. A higher share of rented land increases tech-
nical efficiency for both classes, also in line with Bradfield et al. (2020).  

The effect of subsidies per LSU on inefficiency is not significant for the intensive class but positive for 
the extensive class. This indicates that, in the latter class, farms receiving more subsidies per LSU are 
less efficient compared to other farms. This is in line with a large part of the literature investigating 
subsidies (see Minviel and Latruffe, 2017). We estimated the model again but this time disentangling 
AES subsidies and other subsidies operational subsidies. Results show that there is no change for both 
classes. For the extensive class, the non-AES subsidies as well as the AES subsidies have a positive sign, 
that is to say a negative impact on technical efficiency. For the intensive class, AES subsidies and non-
AES subsidies have no significant impact. 
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Table 2: Estimation results: separating variables, production function and inefficiency drivers 

 Class 1 (intensive) Class 2 (extensive) 
 Coefficient Sign. Coefficient Sign. 
Separating variables: probability to belong to class 1 
Intercept 1.58988 
Stocking density 0.55197 *** 
Ratio of permanent grassland in UAA -3.10614 *** 
Dummy 2014 0.30614 
Production function: log(total farm output) as dependent variable 
Intercept 2.90547 *** 1.52412 *** 
log(UAA) 0.00654  0.00881  
log(total farm labour) 0.12369 *** 0.05970 *** 
log(herd size) 0.15966 *** 0.27100 *** 
log(intermediate consumption) 0.54630 *** 0.64666 *** 
log(capital excluding herd and agricultural land) 0.16703 *** 0.14797 *** 
Dummy Ireland -0.11704 ** -0.14061 *** 
Dummy France -0.08214 ** -0.12782 *** 
Dummy 2014 0.02400 *** 0.04150 *** 
Inefficiency drivers     
Intercept -2.43007 *** -3.42984 *** 
Ratio of hired labour to total labour -0.39056  -0.88254 ** 
Ratio of rented land to UAA -1.89161 *** -0.39569 * 
Operational subsidies per LSU -0.00044  0.00120 *** 
Dummy Ireland -3.34144  0.10411  
Dummy France -2.47456 ** 0.27463 * 
Model’s statistics     
Log-likelihood value 1,626.75 
Posterior probability 0.72 0.74 
Efficiency   
Mean 0.937 0.809 
Number of farms     
Number of farms in total          (% in sample) 2,148 (50%) 2,168 (50%) 
including     
Number of Irish farms               (% in Ireland) 288 (44%) 362 (56%) 
Number of French farms           (% in France) 1,237 (60%) 819 (40%) 
Number of Austrian farms        (% in Austria) 623 (39%) 987 (61%) 

Note: Sign. indicates significance at the 10% (*), 5% (**), or 1% (***) level. 

3.1.6 Conclusion 

This study analysed and compared the technical efficiency of intensive and extensive dairy farms in 
Ireland, France and Austria, with FADN data from the period 2014-2015. Using a LCSFM and two easy-
to-measure variables to identify classes (share of permanent grassland in UAA, stocking density), we 
were able to identify intensive and extensive farms. The latter farms not only have a lower stocking 
density and rely more on permanent grassland, they also use fewer chemical pesticides and fertilisers. 
Thus, this method allows for the identification of thresholds of permanent grassland and stocking rate 
to define classes of farms depending on their degree of intensive technology. It also enables the iden-
tification of performance gaps between classes in terms of technical efficiency, partial productivity 
indicators, and income. Our results show, extensively producing farms are currently performing worse 
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economically than intensive farms, and while current CAP subsidies received by farmers have no im-
pact on intensive farms, they reduce the technical efficiency of extensive farms. 

This has importance for policy design. The CAP greening payment, and in particular the minimum 
thresholds to receive this greening payment, could be designed using the method used here in order 
to adequately compensate farmers for losses due to more extensive production practices. In this con-
text, recent research suggests that extensive and intensive production technologies in dairy farming 
are largely linked to local natural production conditions and public payments, adapted to local site 
conditions, as well as additional income sources that may be decisive for the successful implementa-
tion of an extensification strategy on farms (Renner et al., 2021).  

Extensification, which also includes converting to organic farming, may be a successful adaptative 
strategy in order to increase the resilience of farms with regard to changing economic conditions, 
namely increased market volatility, end of dairy quotas and COVID-19 crisis (Bouttes et al., 2019; Darn-
hofer, 2021). However, as our results show, extensively producing farms are currently performing 
worse economically than intensive farms, thus government support is necessary to compensate for 
the loss in economic sustainability while increasing environmental sustainability. Policy design should 
nonetheless also account for the results from the inefficiency drivers: while current CAP subsidies re-
ceived by farmers have no impact on intensive farms, they reduce the technical efficiency of extensive 
farms, suggesting that the current type of subsidies is not adequate for extensive technologies. 

It should be underlined that the existing FADN data are limited in that they only provide proxies for 
identifying more environmentally-friendly production technologies. While our analysis shows that such 
proxies do have the discriminatory capacity to identify intensive and extensive production technolo-
gies and can provide helpful insights, in the medium to long run, FADN data should be extended by 
additional indicators to identify extensive farming systems and their environmental effects more 
clearly. However, in the quest for such indicators, both costs and benefits need to be weighed (Kelly 
et al., 2018). 
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3.2.1 Introduction and description of case study region 

The current reform of the Common Agricultural Policy (CAP) of the European Union aims to target 
environmental challenges such as climate change and biodiversity loss. The current CAP provides agri-
environmental schemes and ‘green’ payments to incentive farmers to use more environmentally 
friendly practices; for many farmers, this means farming more ‘extensively’. However, while extensive 
farming may not always be clearly defined, it is crucial to be able to identify extensive farms in order 
to provide targeted supports. This report aims to provide a better understanding of intensive and ex-
tensive dairy farming in Ireland.  

Ireland is one of the largest milk producers in Europe, with steadily increasing numbers of dairy cows 
since the abolition of milk quotas in 2015 (Läpple & Sirr, 2019). The Irish dairy sector is export-oriented 
with exports valued up to 4 billion euros per year since 2017. In 2017, Ireland produced 5% of the EU 
milk supply, consuming just 6% of total milk produced as fresh milk and exporting the remainder (Kelly 
et al., 2020). Although Ireland exports dairy products to more than 120 countries in the world, the 
largest destinations are the United Kingdom, the Netherlands, China, Germany, and the United States 
(Bord Bia, 2021). 

Irish grass-based dairy farms are relatively unique in Europe since most farms operate a seasonal milk 
production system with compact spring calving so that milk production matches grass growth. In op-
erating this system, the proportion of grazed grass in the diet of dairy animals is optimised as well-
managed grass-based systems can be highly productive (Macdonald et al., 2008). Dairy cows graze on 
pastures for most of the year, from early spring to late autumn, on average 240 days per year out on 
pasture with 95% of their diet consisting of grass (Bord Bia, 2021).  

Benefiting from mild winters and annual rainfall between 800 and 1200 mm allowing grass growth 
almost all year around, Ireland is also one of Europe’s leading low-cost milk producers (Thorne and 
Fingleton, 2006), which is considered as the main competitive advantage of Irish dairy farming (Läpple 
et al., 2012; Mihailescu et al., 2015). O’Brien et al. (2018) showed that 60% of the total dry matter diet 
of dairy cows in Ireland comes from grazed pasture with the remaining 22% from conserved forage 
and 18% from concentrate feed. Although Irish dairy enterprises are distributed throughout the 26 
counties, they tend to be concentrated in the east and south on better quality soils with high produc-
tivity and livestock carrying capacity. 

Irish dairy farms have been increasing in size and changing production techniques by adopting more 
intensive farming systems as indicated by an increase in the number of dairy cows per hectare (stock-
ing density), improvements in dairy cows genetics and an increase in the share of concentrates in the 
diet (Alvarez & del Corral, 2010). Intensive farms use more non-land inputs, which could lead to envi-
ronmental externalities. Irish dairy production systems are managed intensively compared to other 
Irish grassland agricultural production systems (Mihailescu et al., 2015). Literature has shown that in-



  

LIFT – Deliverable D3.1  
 

L I F T -  H 2 0 2 0  P a g e  27 | 247 

tensive farms are on average more technically efficient than extensive ones (Dakpo et al., 2021; Buck-
ley et al., 2019). In this report, we aim to analyse the technical efficiency of Irish dairy farms with 
heterogeneous technologies and assess performance based on economic indicators.  

3.2.2 Farm typologies 

For the purpose of this analysis across LIFT partner countries, a FADN (Farm Accountancy Data Net-
work) based protocol describes farm typologies in terms of the level of incorporation of ecological 
approaches into the system of each farm that goes beyond the existing farm typologies (Rega et al., 
2021). The FADN-based protocol is based on the calculation of an overall score as the weighted average 
score of selected variables including stocking density, feed, pest control, energy use, seeds, fertilisation 
and depreciation. If the overall score is larger than a threshold, the farm is assigned to the assessed 
farming typology. In this study, the farm typology protocol is applied to 979 Irish dairy farms in the 
period 2013 to 2015. 

According to the FADN-based protocol, low-input farming, integrated farming, organic farming and 
standard farming are the four main typologies. Low-input farming denotes a farming system in which 
the overall use of production inputs is relatively lower, compared to the average level of input of similar 
farms. According to the protocol, Ireland has 82, 156 and 154 low-input dairy farms in 2013, 2014 and 
2015, respectively. The increase between 2013 and 2014 is mainly due to the reduction in the use of 
fertiliser and feed. 

Integrated farming denotes the level of internal integration and circularity of the farm as an ecological 
unit. There are 3, 6 and 7 integrated dairy farms in Ireland in 2013, 2014 and 2015, respectively. The 
relatively low number of integrated dairy farms in Ireland results from the high stocking density and 
low provision of own feed. There are 2, 5 and 7 farms classified as both integrated and low-input farms 
in 2013, 2014 and 2015, respectively. There are only two certified organic dairy farms in the dataset. 
According to Läpple & Cullinan (2012), there are many reasons for the low number of organic farms 
including farmers’ perceptions of organics, profitability and availability of organic schemes, amongst 
others. A visualisation of the typology (Figure A1-A3) is included in the appendix of this report. 

3.2.3 Methodology 

The estimation of production functions is commonly undertaken using the assumption of homogene-
ous technologies for all producers. However, if farms adopt varied technologies, estimating a single 
technology for all farms can yield biased estimates of the technological characteristics (Alvarez & del 
Corral, 2010; Cillero et al., 2019). The most common approach to address the issue of production het-
erogeneity is to first split the sample into several groups based on a priori information and then esti-
mate the technical efficiency for each group based on stochastic frontier models (SFM) (Alvarez & del 
Corral, 2010). In this paper, we adopt a latent class stochastic frontier model to estimate the efficiency 
of two different dairy production systems according to the degree of intensification.  

A latent class model (LCM) defines a finite number of classes into several groups and estimates the 
technology for each group in one stage. The advantage of LCM is that imposing a priori criteria to 
identify which producers are in which class is not necessary. A latent class stochastic frontier model 
(LCSFM) also allows us to examine whether some exogenous variables in the probability function are 
responsible for identifying various latent classes (Kumbhakar & Tsionas, 2011).  

The latent class stochastic frontier model has been well described in the literature (Alvarez & del Cor-
ral, 2010, Dakpo et al., 2021). We briefly summarise the model by constructing a latent class stochastic 
frontier production function as 
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where subscript i  denotes farm, t  denotes time and j denotes the different classes. 𝑦𝑦 is the output 

and x  is a vector of inputs. The general residual equals to | | |it j it j it jv uε = − where u indicates the inef-

ficiency component. We assume that |it jv  follows a normal distribution centred at zero and |it ju  fol-

lows a half-normal distribution. 

Technology heterogeneity indicates that sample can be classified into J  latent classes. The production 
function for each class j  equals  

2015

| | |
1 2013

ln ln
K t

it j k j kit j t j i it j it j
k t

y x D R v uτ α β γ
=

= =

= + + + + −∑ ∑  

Where jτ denotes the class-specific intercepts, k  denotes the number of inputs, tD  are time dum-

mies, and iR  is the regional dummy. The likelihood function | |
1

J

it it j it j
j

LF P LF
=

 
= 

 
∑ for each farm is 

obtained as a weighted average of its likelihood function for each group j  using the prior probabilities 
of class j  as weights. The prior probabilities are based on a multinomial logit estimation with sepa-
rating variables based on the individual characteristics identifying various latent classes. The posterior 
probabilities of class membership are estimated based on Bayes theorem. In this study, we allow farms 
to switch among different latent classes over time.  

To quantify gaps in performance of different latent classes, we adopt various profitability and produc-
tivity indicators. The private revenue-cost-ratio expresses the ability of a farm to cover costs with its 
private revenues. The difference between private and public revenue-cost-ratios represents whether 
subsidies are considered in revenue calculation. We distinguish the revenue-cost-ratio with and with-
out considering the remuneration of owned production factors in the calculation, to compare the prof-
itability of farms irrespective of how they operate (e.g., family labour or paid labour). Partial produc-
tivity indicators applied in the report include average product of land, labour, capital, and average 
product of intermediate consumption. 

3.2.4 Data 

This study utilises data from FADN, which is the only source of microeconomic data based on harmo-
nised bookkeeping principles in the European Union. The variables used in this study include total milk 
output (Euros), land area (in utilised agricultural area, UAA, in hectares), total labour (in full time equiv-
alent annual working units, AWU), intermediate consumption (Euros), and capital (Euros). Intermedi-
ate consumption includes veterinary expenses, fertilisers and pesticides use, seeds purchase and other 
variable materials related to animal food consumption. The capital variable excludes the land value4 
and value of livestock. The values of inputs and products are adjusted with deflation indices to the 
base year value in 2010.  

We include year dummies for 2013 and 2014 (2015 as the baseline category), and a region dummy 
indicating whether the farm is located in Border, Midland, Western (region=1) or the farm is located 
in the South and East (region=0) where the environmental context e.g. soil quality, facilitates greater 

                                                           
4 Due to the missing land values in 2013, we approximate land values for each farm in 2013 with the average of land values 
in 2014 and 2015. We exclude 27 dairy farms that are present in 2013 but not in the later years. 



  

LIFT – Deliverable D3.1  
 

L I F T -  H 2 0 2 0  P a g e  29 | 247 

production in general. The separating variables we adopt in this study to classify intensive and exten-
sive dairy farms include stocking density and a regional dummy. Stocking density is a crucial indicator 
measuring the intensification of a farm. Because physical differences among regions may affect the 
choice of the technology, we also introduce the region dummy as a separating variable (Kumbhakar et 
al., 2009). Since the average share of permanent grassland in Ireland is up to 98% with a median of 
100%, we do not consider it as an appropriate separating variable. We remove two outliers in the 
sample because their capital is too high considering other characteristics of the farm. Table 1 shows 
the descriptive statistics. 

Table 1: Descriptive statistics of Irish dairy farms, 2013 - 2015 
 

Mean Median Std. dev. Min Max 
Output (Euros) 188100 158544 117983 11545 787997 
Land (ha) 62.6 54.7 33.4 8.1 255.6 
Labour (AWU) 1.7 1.5 0.7 0.2 7.0 
Capital (Euros) 392523 323047 286574 15400 2620260 
Consumption (Euros) 109511 94175 69277 9538 496630 
Stocking density (LU/ha) 2.1 2.1 0.6 0.5 4.4 
Number of observations 948     

 

3.2.5 Results 

The sample is divided into two latent classes to analyse the effects of intensification on the technical 
efficiency of Irish dairy farms. The choice of being classified into one class for each farm in the sample 
is guided by the value of the average posterior probability. Table 2 shows the estimation results for 
the production function, inefficiency drivers, and separating variables. The results show that an in-
crease in stocking density increases the probability of being classified as class 1. Therefore, class 1 
contains relatively more intensive farms and class 2 is relatively more extensive farms, even though 
Ireland has a high stocking density in general compared with other European countries. However, the 
location of farms does not have a significant impact on classification. 

There are 663 intensive farms and 285 extensive farms classified by the latent class stochastic frontier 
model. All inputs in the production function have statistically significant positive impact on the output, 
except for the input of labour in the extensive class, i.e. labour does not have a significant impact on 
the output for extensive dairy farms in Ireland. As would be expected, dairy farms located in less fa-
voured areas (LFA) have significantly lower output. The year dummies show that compared with the 
year 2015, both the year 2013 and 2014 are less productive years. Farms located in southern and east-
ern regions have significantly higher output. 

For the estimation of inefficiency determinants, a negative coefficient indicates a negative impact on 
the technical inefficiency, i.e. a positive impact on the technical efficiency. We do not see any signifi-
cant inefficiency determinants for intensive dairy farms while for extensive farms, operational subsi-
dies per ha of UAA and share of rented area in total UAA have a positive effect on the technical effi-
ciency. As mentioned in the literature, the impact of subsidies on farms’ technical efficiency is ambig-
uous (Dakpo et al., 2021). The intensive dairy farms in the sample are on average more technically 
efficient than the extensive ones. 
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Table 2: Estimation results for latent class stochastic frontier models 

Production function Class 1 Class 2 
Intercept 3.35336*** 1.68535*** 
Log(land) 0.29322*** 0.28323*** 
Log(labour) 0.04645** -0.0547 
Log(capital) 0.08163*** 0.05962*** 
Log(consumption) 0.58076*** 0.74295*** 
LFA -0.04078*** -0.06865** 
D2013 -0.23181*** -0.21716*** 
D2014 -0.20507*** -0.16470*** 
Region 0.04594*** 0.11573*** 
Inefficiency determinants 

  

Intercept -3.33878*** -2.00385*** 
Operational subsidies per ha of UAA -0.00334 -0.00309** 
Share of hired labour in total labour -11.51535 -1.01838 
Share of rented area in total UAA -1.46231 -2.41508*** 
Separating variables 

  

Intercept -10.94487*** 
 

Stocking density 6.24078*** 
 

Region -0.46259 
 

   

Observations 663 285 
Average efficiency 0.9521 0.8635 
Average posterior probability 0.9187 0.8789 

Note: *, **, and *** indicates significance at 10%, 5%, and 1%, respectively. 

Table 3 shows the characteristics of both classes of dairy farms in the sample. Intensive dairy farms 
have on average higher stocking density and higher level for all inputs, except for land. The difference 
of land in two latent classes is not significantly different. More extensive farms are located in the less 
favoured areas compared with intensive ones.  

We also apply profitability indicators and productivity indicators to farms in each class. On average, 
intensive dairy farms in the sample have significantly higher profits and productivity indicated by 
higher private and public revenue-cost-ratio (with/without remuneration), higher average product of 
land, labour, capital and intermediate consumption. There is no significant difference in equity ratio 
between two latent classes. Table A1 in the appendix summarises the profitability indicators and 
productivity indicators for both dairy and beef farms between 2013 and 2015. 
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Table 3: Comparison of two latent classes 
 

Mean_C1 Mean_C2 t-test 
Output (Euros) 212102 132262 *** 
Herd size (LU) 140.44 96.33 *** 
Land (ha) 62.32 63.2 

 

labour (AWU) 1.722 1.529 *** 
Capital (Euros) 425619 315532 *** 
Consumption (Euros) 119642 85942 *** 
LFA 0.5837 0.7825 *** 
Region 0.7919 0.7123 ** 
Operational subsidies per ha of UAA (Euros) 333.65 288.6 *** 
Share of hired labour in total labour 0.12542 0.07609 *** 
Share of rented area in total UAA 0.231566 0.2111 ** 
Stocking density (LU/ha) 2.3396 1.5435 *** 
Farm net value added/AWU (Euros/AWU) 60668 37097 *** 
Private revenue-cost-ratio 1.4542 1.2614 *** 
Public revenue-cost-ratio 1.6135 1.4648 *** 
Private revenue-cost-ratio (remuneration)⁜ 1.0725 0.9127 *** 
Public revenue-cost-ratio (remuneration)⁜ 1.188 1.0493 *** 
Product land (Euros/ha) 3728 2226 *** 
Product labour (Euros/AWU) 135378 93570 *** 
Product capital 0.15379 0.12242 *** 
Product expense 1.7571 1.4962 *** 
Equity ratio 0.954 0.9579 

 

⁜Calculated ratio considering remuneration of owned production factors. Note: *, **, and *** indicates significance at 10%, 
5%, and 1%, respectively. 

3.2.6 Discussion and conclusions 

There have been debates over the future of farming systems focusing heavily on the socio-ecological 
trade-offs between intensive and extensive pathways for growth (Coomes et al., 2019; Dakpo et al., 
2021). Based on the latent class stochastic frontier model, we identify intensive and extensive dairy 
farms in Ireland and analyse the technical efficiency of both typologies of farms with stocking density 
and a regional dummy as separating variables. The study confirms that intensive farms are more tech-
nically efficient and there exist significant differences in output and across inputs between intensive 
and extensive farms in the sample. Various economic indicators show that intensive farms are more 
profitable in general.  

The relationship between agriculture and the environment is complex. Recent reforms of the Common 
Agricultural Policy of the EU are increasingly focused on the environmental impact of intensive agricul-
ture. Our study provides crucial information for future design of the agri-environmental policies to 
regulate production or to compensate farms that may experience a decrease in productivity and rev-
enue with an extensive farming practice; this is important for enhancing the competitiveness of Euro-
pean farms to compete in the global markets.  

A limitation of this study lies in the lack of separating variables (e.g. soil quality) that could capture 
environmental differences between farming typologies as described using the FADN dataset. Further 
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work is planned to add more agronomic and spatial variables from the Irish National Farm Survey data 
to further nuance the estimation. 
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3.2.8 Appendix 

Figure A1-A3. Visualisation of the farm typology, 2013-2015 

 
Figure A1. Typology of Irish dairy farms, 2013 

 

 

 
Figure A2. Typology of Irish dairy farms, 2014 
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Figure A3. Typology of Irish dairy farms, 2015 

 
Table A1: Economic indicators for dairy and beef farms, 2013 – 2015. 

  
Dairy farm Beef farm 

Year 
 

2013 2014 2015 2013 2014 2015 
Private revenue-cost-ratio 1.28 1.47 1.43 0.88 0.93 1.05 
Public revenue-cost-ratio 1.45 1.65 1.60 1.38 1.45 1.54 
private revenue-cost-ratio (remuner-
ation)* 

0.97 1.07 1.03 0.57 0.56 0.62 

Public revenue-cost-ratio (remuner-
ation)* 

1.09 1.19 1.15 0.86 0.83 0.88 

Average product of land (Euros/ha) 3296 3343 3189 973 905 1014 
Average product of labour (Eu-
ros/AWU) 

12180
7 

124365 121681 45899 42463 46653 

Average product of capital  0.16 0.14 0.14 0.06 0.05 0.05 
Average product of intermediary ex-
penses 

1.58 1.74 1.70 1.12 1.11 1.25 

Equity ratio 0.95 0.96 0.95 0.98 0.99 0.99 
*Calculated ratio considering remuneration of owned production factors 
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3.3 Modelling heterogeneous technologies in the presence of sample selection: The 
case of dairy farms and the adoption of agri-environmental schemes in France 
(INRAE) 

K Hervé DAKPO 1,2 , Laure LATRUFFE 3 , Yann DESJEUX 3 , Philippe JEANNEAUX 4 

 
1 Université Paris-Saclay, INRAE, AgroParisTech, Economie Publique, 78850, Thiverval-Grignon, France 
2 Agricultural Economics and Policy Group, ETH Zürich, Sonneggstrasse 33, CH-8092 Zürich, Switzerland 
3 INRAE, GREThA, Université de Bordeaux, 33608, Pessac, France 
4 VetAgro Sup, UMR Territoires, 63370, Lempdes, France 

 

3.3.1 Introduction 

We contribute to the literature that investigates the difference in economic performance between 
ecological farms and non-ecological farms. In the literature, two categories of ecological and non-eco-
logical farms are identified based on recognised nomenclatures, such as participation or not in envi-
ronmental schemes such as the Common Agricultural Policy (CAP) agri-environmental schemes (AESs). 
The present study suggests a methodology that allows to identify a further degree of ecological farming 
within the two categories through latent classes, which computes farms’ technical efficiency while ac-
counting for their production heterogeneity. We develop a model that enables correcting for the po-
tential endogeneity associated with the adoption of AESs. The application is to French dairy farms in 
2002-2016, using data from the French Farm Accountancy Data Network (FADN). In other words, we 
investigate for this sample whether there is a performance (technical efficiency) gap between more 
and less intensive farms, on the one hand in the sub-sample of farms with AESs, and on the other hand 
in the sub-sample of farms without AESs. This work is partly based on the article Dakpo et al. (2021a). 

3.3.2 Description of case study region 

The case study is the whole France. Dairy farming in France is mainly located in Western France (Brit-
tany, Pays-de-Loire) with intensive farming producing milk, and mountainous regions (Auvergne, 
Rhône-Alpes, Franche-Comté) with more extensive farming producing high value cheese. 

AESs aim to increase farmers’ adoption of environmentally-friendly practices and are designed by Eu-
ropean Union’s member states. Farmers voluntarily adopt AESs, generally for five years, and receive 
payments to compensate for additional costs and potential profit losses following the adoption of en-
vironmentally-friendly practices. In France, in the case of grazing livestock farming, environmental 
practices covered by AESs relate to: the extent of permanent grassland; stocking rate; no-tillage and 
no pesticides on permanent grassland; set-up of ecological interest area; grass buffer strips; low use 
of nitrogen fertilisers; conversion to and maintenance of organic farming. 

3.3.3 Method 

We use the latent class stochastic frontier model (LCSFM), which simultaneously estimates the classes 
of farms depending on their technology, and each class's frontier (Orea and Kumbhakar, 2004; Greene, 
2005). The distribution of farms into classes is based on the separating variables that capture more or 
less intensive technologies. 



  

LIFT – Deliverable D3.1  
 

L I F T -  H 2 0 2 0  P a g e  36 | 247 

This approach had already been applied to dairy farms (and beef cattle farms and mixed dairy-beef 
farms) on French FADN data over 2002-2016 by Dakpo et al. (2021b). The authors used the following 
variables as separating variables: the livestock stocking rate; the share of permanent grassland in the 
utilised agricultural area (UAA); a capital intensity measured by the ratio of fixed assets per labour unit; 
environmental practices, proxied by the amount of AES subsidies per hectare of UAA; weather condi-
tions, through average daily effective rainfall (in mm) and temperature (in degrees Celsius); a dummy 
for farm location in less favoured areas (LFA), and a time trend. The authors identified two classes with 
the LCSFM, one more intensive and one less intensive. The intensive class was on average more tech-
nically efficient than the extensive class for beef cattle and dairy farms. In contrast, in the case of mixed 
farms, the two classes had similar average technical efficiency. 

In the current article, we extend the methodology of Dakpo et al. (2021b) to account for the fact that 
the adoption of AESs is endogenous. We extend Greene (2010)’s stochastic frontier sample selection 
model to account for production heterogeneity under the LCSFM. In this framework, endogeneity 
arises from the correlation between the two-sided error component in the production function and 
the sample selection equation noise. This sample selection equation is modelled as a probit with the 
following explanatory variables: milk price in Euros per ton of milk; farmer’s age; farmer’s low educa-
tion dummy taking the value one if the farmer has a low level of education (that is, either no education 
or primary education) and zero if the farmer has a high level of education (secondary education or 
above); and 21 regional dummies. The sample selection parameter from this first step is integrated in 
the second step LCSFM. 

The LCSFM is estimated separately for each sub-sample (sub-sample of farms with AESs; sub-sample 
of farms without AESs). In the LCSFM we specify the production function as a Translog output distance 
function with two outputs (the quantity of milk produced, and the other output value in constant Eu-
ros), five inputs (UAA in ha; total labour in full time equivalent annual working units; herd size in live-
stock units; intermediate consumption in constant Euros; and fixed assets excluding land and herd in 
constant Euros), year fixed effects and a dummy indicating whether the farm is located in LFA. Two 
separating variables are used in the LCSFM to identify the farm classes: the stocking rate, calculated as 
the number of livestock units per ha of UAA; and the share of permanent grassland in the UAA. The 
prior probability of farms belonging to a class change over specific periods (2002-2006, 2007-2013, and 
2014-2016) and corresponds to the main CAP reforms, while it is fixed over time in the literature. 

We simultaneously investigate the drivers of inefficiency, with the following variables: farmer’s age; 
farmer’s low education dummy; share of hired labour in total labour; share of rented area in UAA; CAP 
operational subsidies per ha (fully decoupled subsidies in the form of the Single Farm Payment, subsi-
dies coupled to the acreage of specific crops and to the headage of specific livestock, subsidies received 
from adopting AESs, and subsidies received for being located in a LFA). 

All computations are carried out using R software (R Core Team, 2020). The LCSFM is estimated with 
the R package sfaR (Dakpo et al., 2021c) which has been written in the framework of the LIFT project. 

3.3.4 Data 

We use the French FADN, managed by the French Ministry of Agriculture. We use the unbalanced 
database during 2002-2016, consisting of 15,436 observations in total. The farms in the full sample 
have on average a UAA of 90 ha and a herd of 99 livestock units. They use 1.9 annual working units of 
labour and produce 338 700 litres of milk for an average price of 340 Euros per ton. Their stocking rate 
is 1.2, and the share of permanent grassland in UAA is 40% on average. Farmers are 47 years old on 
average, and 24% of them have low education. The share of hired labour in total labour is 6%, and the 
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share of rented area in UAA is 79% on average. They receive on average 378 Euros of operational 
subsidies per ha of UAA. 

34% of the whole sample observations are in the sub-sample of farms with AESs. On average, output 
levels, milk yield, herd size, and intermediate consumption are higher, but UAA and milk price are 
lower in the sub-sample of farms that do not have AESs than the sub-sample of farms with AESs. About 
75% of the farms with AESs are located in LFAs, while this proportion is 36% for the farms without 
AESs. Regarding separating variables, the stocking rate is higher, and the share of permanent grassland 
in UAA is lower for farms with no AESs than for farms with AESs. 

3.3.5 Results 

The first step selection model results show that the probability of having AESs increases with milk price, 
decreases with age, and increases with low education attainment. The result regarding education is 
not in line with the literature (Siebert et al., 2006). 

For each sub-sample, the LCSFM results show differences in coefficients and elasticities between the 
model estimated on the full sub-sample (single-class) and the two-class model, highlighting the im-
portance of accounting for technological heterogeneity in the frontier estimation. In addition, results 
show that the selectivity parameter is significant, confirming the presence of sample selection bias and 
the necessity to correct for the bias with the first-step probit model. 

For each of the two sub-samples (farms with AESs and farms without AESs) results identified one class 
with extensive technology and one class with intensive technology: the probability of belonging to one 
of the two classes (which is then called the extensive class) is indeed positively associated with a higher 
share of permanent grassland in UAA, and negatively (for the sub-sample of farms with AESs) or non-
significantly (for the sub-sample of farms without AESs) associated with a higher stocking rate. For both 
sub-samples, the farms in the intensive class rely less on permanent grassland and more on external 
inputs such as pesticides, fertilisers and concentrated feed, than the farms in the extensive class. On 
average, the intensive class is paid a lower milk price than the extensive class for both sub-samples 
(AES adopters and AES non adopters), and receives more CAP operational subsidies per ha of UAA. 
Despite this, the ratio of revenue to revenue plus subsidies (indicating the degree of market orientation 
for the farms), shown in Table 1, is significantly higher for the intensive class than the extensive class. 
As regard performance, in each sub-sample, the intensive class is significantly better performing than 
the extensive class in terms of all performance indicators presented in Table 1: technical efficiency, 
partial productivity ratios, cost-revenue indicators.  

As regards the inefficiency drivers for the sub-sample of farms with AESs, in both classes the level of 
operational subsidies per hectare of UAA negatively influences technical efficiency. While farmer’s age 
increases efficiency in the extensive class, the effect is reversed in the intensive class. The low educa-
tion variable negatively affects the extensive class’s efficiency and is non-significant in the intensive 
class. For this latter class, the share of rented area increases the efficiency level while in the extensive 
class, it is the share of hired labour that improves efficiency; the other effects are non-significant. As 
regards the inefficiency drivers for the sub-sample of farms without AESs, low education decreases 
efficiency for both classes. Operational subsidies per ha of UAA decrease efficiency for the extensive 
class only, and increase it for the intensive class. The impact of the share of rented area is positive on 
efficiency for the intensive class and non-significant for the extensive class. The share of hired labour 
has no significant effect in either class. 
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Table 1: Comparison of technical-economic performance of the extensive and intensives classes in both sub-samples 
 Sub-sample of AES adopters Sub-sample of AES non-adopters 

Variables Extensive class Intensive class t-test of equality of 
means (p-value) Extensive class Intensive class t-test of equality of 

means (p-value) 
Milk volume per milking cow (tons per cow) 5.31 6.16 <1e-3 5.75 6.95 <1e-3 
Total output to UAA (Euros/ha) 1,678 2,260 <1e-3 2,190 2,771 <1e-3 
Total output to labour (Euros/AWU) 93,441 105,058 <1e-3 106,422 121,893 <1e-3 
Total output to capital 0.76 0.88 <1e-3 0.88 1.09 <1e-3 
Total output to intermediate consumption 2.205 2.208 0.09 1.93 2.01 <1e-3 
Technical efficiency 0.85 0.98 <1e-3 0.84 0.95 <1e-3 
Private revenue-cost-ratio not considering re-
muneration of owned production factors (a) 1.06 1.13 <1e-3 1.03 1.15 <1e-3 

Public revenue-cost-ratio not considering re-
muneration of owned production factors (b) 1.36 1.38 <1e-3 1.25 1.34 <1e-3 

Private revenue-cost-ratio considering remu-
neration of owned production factors (c) 0.69 0.75 <1e-3 0.72 0.80 <1e-3 

Public revenue-cost-ratio considering remu-
neration of owned production factors (d) 0.88 0.92 <1e-3 0.87 0.94 <1e-3 

Revenue to revenue and subsidies 0.78 0.81 <1e-3 0.83 0.86 <1e-3 
Equity to total assets 0.53 0.58 <1e-3 0.64 0.68 <1e-3 
Number of observations 2,759 2,515 <1e-3 4,495 5,667 <1e-3 
(a) : Revenue / (intermediate consumption + depreciation + paid interest + paid labour + paid rent). It shows the ability of a farm to cover costs with its private revenues, except for costs for 
owned production factors. 
(b) : (Revenue + subsidies) / (intermediate consumption + depreciation + paid interest + paid labour + paid rent). It shows the ability of a farm to cover costs with its private and public revenues, 
except for costs for owned production. 
(c) : Revenue / (intermediate consumption + depreciation + paid interest + paid labour + paid rent + imputed labour + imputed rent). It shows the ability of a farm to cover costs with its private 
revenues, including those for costs for owned production factors (except for imputed interest which were not possible to compute). 
 (d) : (Revenue + subsidies) / (intermediate consumption + depreciation + paid interest + paid labour + paid rent + imputed labour + imputed rent). It shows the ability of a farm to cover costs 
with its private and public revenues, including those for costs for owned production factors (except for imputed interest which were not possible to compute). 
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3.3.6 Conclusion 

The approach used in this article, namely a LCSFM with a first-step sample selection equation, allows 
identifying a range of ecological farms. Our findings indeed show that heterogeneity can be reflected 
in terms of more or less intensive technology within farms that have adopted AESs and within farms 
that have not adopted AESs. In total, four classes are identified from the most extensive (the extensive 
class in the AESs adopters sub-sample) to the most intensive (the intensive class in the AESs non-
adopters sub-sample). From a policy point of view, it suggests that there is additional room to give 
incentives to farmers to modify their technology, even for farmers who are already engaged in an AES. 

The main divergence in findings between the LCSFM for the sub-sample of farms with AESs and the 
LCSFM for the sub-sample of farms without AESs, relates to the impact of operational subsidies per ha 
on efficiency. Our results, therefore, underline that, from a policy point of view, accounting for heter-
ogeneity both in terms of intensive and extensive technology and in terms of the adoption of AESs, 
could help better target the CAP. 

Future research with this approach needs to account for intra-class heterogeneity (fixed or random 
effects) with panel data. 
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3.4 The economic performance of transitional and non-transitional organic dairy 
farms: A panel data econometric approach in Brittany (INRAE) 

Elodie Letort, Aude Ridier 

 

UMR SMART-LERECO, INRAE, Institut Agro, Rennes, France 

 

3.4.1 Introduction 

The existing literature on the drivers of farm performance in organic farms, compared to conventional 
farms, is extensive, but it is still difficult today to identify the specific performance outcomes of organic 
farms insofar as the samples are very small (Dedieu et al. 2017). The results obtained also highly de-
pend on the regions and the agricultural sector studied, the economic performance indicators, and the 
method used to avoid bias in the comparison between production systems. There is no consensus in 
the scientific literature. In this study, we propose to compare the economic and financial performance 
of both conventional and organic dairy farms, and our analysis differs from the existing literature in 
two ways. First, we use a fixed-effects and random-effects model to exploit the longitudinal dimension 
of our data and attempt to identify the specific effect of belonging to an organic label on the economic 
performance of farms. This first step allows us to explore the potential effects of other potential de-
terminants, such as size, more or less intensive production system, and other unobservable individual 
characteristics. Second, we complete this study by analysing the impact of the conversion period on 
the performance of organic farms. 

3.4.2 Description of case study region 

The analysis is carried out on dairy farms in the department of Ille-et-Vilaine (NUTS3 level) in the region 
Brittany in the northwest of France. This is the leading French department in terms of milk production. 
Organic milk represents more than 10% of the volume of milk collected in this department. The studied 
territory is relatively homogeneous in terms of pedo-climatic conditions. We classify the farms into 3 
categories: organic farming systems (after conversion), conventional-corn systems and grassland sys-
tems. To distinguish "corn" systems from "grassland" systems, we use the criteria set in the framework 
of the "mixed farming system" agro-environmental climate measures (MAEC - SPE) implemented with 
the 2015 CAP. To receive a payment, the contracting farms must respect, among other things, con-
straints on their share of corn and grass in their farm. In this study, we consider a system to be grass-
land when its share of corn in the main forage area (MFA) is less than 28% and its share of grass in the 
utilised agricultural area (UAA) is greater than 55%, which corresponds to the necessary conditions of 
this MAEC to obtain the lowest remuneration (MAEC type "SPE3"). As the farms in this last category 
are very numerous and heterogeneous, we propose to distinguish two subgroups of corn systems ac-
cording to their share of corn fodder in the main forage area (MFA) based on a statistical classification 
that distinguishes the most intensive systems (corn system 1) from the others (corn system 2). 

3.4.3 Method 

We propose to compare the economic and financial performance of both conventional and organic 
dairy farms. First, we use a fixed-effects and random-effects model to exploit the longitudinal dimen-
sion of our data and attempt to identify the specific effect of belonging to an organic label on the 
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economic performance of farms. Second, we complete this study by analysing the impact of the con-
version period on the performance of organic farms. 

3.4.3.1 Economic and financial performance indicators 

To measure the performance of farms and their ability to cope with production or market shocks, we 
rely on traditional performance indicators. These are based on four dimensions of the economic and 
financial performance of the farm: its profitability, return on assets, solvency and liquidity (Wolf et al. 
2016; Picaud, Ridier and Ropars-Collet, 2015). 

We approach the profitability of farms, i.e., their capacity to create wealth, by controlling their inter-
mediate consumption via two main indicators: on the one hand, the ratio of net profit to sales known 
as the gross profit margin (GPM) or margin rate, shows the percentage of sales that a company retains 
after covering all costs; on the other hand, EBITDA or gross operating profit, is the second indicator of 
profitability that measures the wealth created by the company once intermediate consumption and 
salary costs have been removed from production and operating subsidies (mainly CAP subsidies) have 
been added. In the analysis of profitability, we also use the milk gross margin (GM) indicator per litre 
of milk produced. This indicator balances milk sales and operating expenses (costs of feed purchases, 
veterinary and breeding expenses) of dairy activity. The rate of return on assets (ROA) is defined as 
operating income divided by total assets and reflects the ability of firms to use assets, both fixed and 
current, to generate profits. The debt-to-asset ratio (DA) is used to assess the solvency of firms. It is 
the ratio of total debt to total assets of the firm. The current ratio (CR) is a liquidity ratio that indicates 
the amount of cash and cash equivalents in proportion to short-term obligations, measuring the ca-
pacity of a firm to meet its short-term obligations. To complete our approach to the solvency of the 
firm, we use a final indicator, cash flow. Cash flow (CF) is equal to the balance between, on the one 
hand, the resources that the firm generates in the long term as a result of its policy of financing fixed 
assets and the income from its activity and, on the other hand, the financing needs of the activity in 
the short term (working capital requirements). The elements likely to influence cash flow are both "top 
line" elements (investments, such as those made during the conversion, and the results of previous 
years) and "bottom line" elements (inventories, operating debts and receivables). A positive cash flow 
reflects the flexibility of firms to deal with unforeseen events without having to rely on external funds. 
A negative cash flow indicates short-term borrowing and a shortage of cash. This indicator, therefore, 
provides insights into the financial health of a farm. The interpretation of this indicator remains deli-
cate, however, since the level of cash flow is essentially very volatile, as it is highly dependent on mar-
ket or weather volatility in a given year as well as on investment choices, which vary greatly from one 
company to another. These indicators reflect the short-term performance of farms. One indicator that 
can measure the long-term performance of firms is the total growth rate of assets (GRA). It measures 
the percentage change in a firm's assets from one year to the next and is equal to the total assets of 
one year over the total assets of the previous year minus 1. This indicator reflects the increase in the 
size and financial strength of a firm from one year to the next. 

3.4.3.2 The linear mixed-effects model 

The economic and financial performance of farms can be influenced by multiple factors: improved 
productivity allowed by better technical performance (linked to the characteristics of the farm such as 
its size and its level of mechanisation, or to the characteristics of the farmer such as his individual skills, 
experience and training), exogenous factors such as climate or a more favourable price situation, or 
the existence of better prices durably linked to belonging to a label such as organic. To differentiate 
the impact of individual farm specificities on their performance from the effects induced by organic 
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farming, we build a linear mixed-effects model, as done by Wolf et al. (2016) on U.S. dairy farms. The 
interest in this statistical model is to control, in a simple way, for individual specifics via a random effect 
and time specifics via a fixed effect to identify the impact of organic farming on performance via an-
other fixed effect. 

Indeed, the random effect allows us to take into account only the variability related to the farm, with-
out having to detail in the model those variables describing the specificities of the farms in terms of 
agricultural practices or farm structure. This variability is taken into account by adding to the model a 
random constant 𝑢𝑢𝑖𝑖 specific to each farm. This random effect is characterised by a variance parameter 
that must be estimated in addition to the variance of the model errors 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖. The random variable 𝑢𝑢𝑖𝑖 
follows a normal distribution 𝑁𝑁(0,𝜎𝜎𝑢𝑢2), where 𝜎𝜎𝑢𝑢2 is the inter-subject variance. The random variable 
𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 follows a normal distribution 𝑁𝑁(0,𝜎𝜎𝜀𝜀2), where 𝜎𝜎𝜀𝜀2 is the within-subject variance. We assume that 
these random variables 𝑢𝑢𝑖𝑖 and 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖  are independent. 

The fixed effects allow us to control for a possible time effect and to identify whether belonging to a 
group, particularly to the group of organic farms, impacts the economic and financial performance of 
the farms, following this equation: 

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜇𝜇 + 𝛾𝛾𝑖𝑖 + 𝜏𝜏𝑖𝑖 + (𝛾𝛾𝜏𝜏)𝑖𝑖𝑖𝑖 + 𝑢𝑢𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖    

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 corresponds to the performance indicator observed at time t of individual i in group k; and the 
fixed effect term 𝜇𝜇 corresponds to the mean. The term 𝛾𝛾𝑖𝑖 represents the deviation from the mean 
associated with time t. The term 𝜏𝜏𝑖𝑖   represents the deviation from the mean associated with group k. 
In our model, we will define two groups, one group representing the production systems, in particular 
the organic farming system, and the other group representing the size of the farms. The term(𝛾𝛾𝜏𝜏)𝑖𝑖𝑖𝑖 
represents the deviation from the mean associated with the interaction of time and group k. The term 
𝑢𝑢𝑖𝑖 is an individual random effect, and the term 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 corresponds to the residual. The term 𝜇𝜇 + 𝛾𝛾𝑖𝑖 +
𝜏𝜏𝑖𝑖 + (𝛾𝛾𝜏𝜏)𝑖𝑖𝑖𝑖 corresponds to the fixed and deterministic part of the model, while the term 𝑢𝑢𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖ℎ 
corresponds to the random part. 

3.4.4 Data 

We have individual accounting data provided by CER FRANCE Brocéliande (a management and ac-
countancy agency for farms operating in the department of Ille-et-Vilaine, Brittany). This database lists 
the private accounting data of both organic and conventional dairy farms in Ille-et-Vilaine. It contains 
1,016 dairy farms, 95 of which are or are converting to organic farming during the period. We have an 
unbalanced panel over 10 years; from 2007 to 2017, each farm was followed between 2 and 10 years, 
for a total of 5,918 observations. 

The comparison of the performances according to the production system (organic and non-organic) is 
carried out on this complete sample. The analysis of the impact of the conversion to organic on the 
performances is carried out on a sample composed of farms that are in an organic system or that 
converted to organic farming during our study period. We have 313 observations over 3 periods, 144 
observations before conversion, and 53 observations during conversion, which we define as the year 
of conversion plus 3 years, and 116 observations after conversion. 
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3.4.5 Results 

3.4.5.1 Descriptive statistics of the data 

We identified a few characteristics of organic systems (especially in the dairy sector) that we believe 
describe their production technology and on which there is a consensus in the literature. These find-
ings are confirmed by the descriptive analysis of the different production systems in terms of struc-
tural, agronomic and economic characteristics (see Table 1). First, organic farmers value their agricul-
tural products under the organic label and thus benefit from an increase in the value of their selling 
prices. On average, in our sample, the price of milk is between 20 and 25% higher in organic systems, 
which corresponds to a milk premium of between 50 and 100€/ton of milk, which can vary depending 
on the dairy collector. Second, organic farming is based on a sparing and efficient use of variable inputs, 
especially concentrates, fertilisers and agrochemicals. On average, in our sample, we observe operat-
ing expenses in relation to gross product that are approximately 15% lower for organic systems, thanks, 
in particular, to lower expenses for concentrates (219€/LV for organic systems compared to 362€/LV 
for the most represented corn-based systems). Third, given the lower use of concentrates, cattle feed-
ing in organic systems is based essentially on grazed grass or grass silage, which requires more grass-
land. In our sample, the average UAA of organic farms is 80 ha (between 60 and 70 ha for other pro-
duction systems), and 70% of this area is allocated to grassland (between 32 and 46% for corn systems). 
These last two points allow organic farmers to reach a higher level of food autonomy, which is gener-
ally considered a prerequisite for their conversion to organic production. Finally, organic dairy farms 
rely on animal/plant complementarity to manage soil fertility without the use of synthetic fertilisers 
and make greater use of meadows and grass to feed the herd to limit the use of external feed. They 
diversify their crop rotation by implementing longer rotations to manage disease and parasite prob-
lems without having to rely on agrochemicals. These complementarities are a source of economies of 
scope. The dairy farming systems in our sample are relatively homogeneous in the sense that they all 
produce cereals, forages and grassland, yet all of them do not necessarily make optimal use of the 
interactions between crop and animal production. Some farms seem to be moving towards a simplifi-
cation pathway and a specialisation of dairy activity in search of economies of scale. 

Thereafter, we describe the average economic and financial situation of each group based on the eco-
nomic and financial performance indicators defined in the previous section (see Table 2). Finally, we 
analyse the distribution of farms in each production system according to their size, defined by the 
number of dairy cows (see Table 3). Overall, despite very similar technical and agronomic characteris-
tics of the grassland and organic systems, the organic farms have gross margins per litre of milk pro-
duced that are higher on average than the grassland group. On the other hand, the gross margin profit 
(GMP) and return on assets (ROA) indicators are quite close between the two production systems and 
seem to be higher than in the systems based on corn. In contrast, the solvency ratio appears to be 
lower on average for organic farms than for conventional farms. This can be explained by a higher level 
of investment during the conversion phase (e.g., the purchase of animals and equipment, which is 
confirmed by the greater proportion of large herds in the organic group), which can lead to an in-
creased level of debt. In terms of herd size, the difference was also significant between grassland and 
organic systems. More than 80% of the grassland systems are small or medium sized, whereas the 
organic systems are mostly (54%) in the large class (more than 60 cows), which can also be explained 
by a lower average level of milk productivity than in the grassland systems (i.e., to achieve the same 
volume, more cows are needed). In addition, if we consider the level of productivity per cow by size 
class and by system, it appears that, in the grassland sector, the increase in herd size is not accompa-
nied by a significant change in the level of milk productivity, whereas in the organic sector, this change 
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from small to large herds results in a decrease of 1,000 litres per cow (cf. Table 4). Thus, in organic 
systems, a larger herd size seems to be accompanied by lower milk productivity, as the decrease in 
milk productivity with size may be a source of diseconomies of scale. 

The conversion to organic farming in dairy systems is also accompanied by an increase in assets (capi-
talisation - GRA indicator in Table 2). This increase seems, on average, to be accompanied by an in-
crease in the rate of return on capital, which would indicate the presence of economies of scale (the 
investments would be profitable because of higher market prices than conventional milk and lower 
feed costs). 

Table 1: Statistical description of farm categories. 

 Corn system 1 Corn system 2 Grass system Organic system 
Number of observations 1 493 3 773 483 169 

UAA 69 ha 67 ha 61 ha 80 ha 

Share of FC/MFA 53% 38% 21% 16% 

Share of grass/MFA 32% 46% 67% 70% 

Share of crops/UAA 36% 25% 16% 20% 

Total milk produced 434 000 litres 372 000 litres 396 000 litres 376 000 litres 

Milk produced per cow 7 657 litres/cow 7 144 litres/cow 6 418 litres/cow 6 075 litres/cow 

Number of dairy cows 55.89 52.39 49.34 67.84 

Animal density 1.26 cow/ha MFA 1.09 cow/ha MFA 0.96 cow/ha MFA 1. 00 cow/ha MFA 

Price of milk €331/1000 l €331/1000 l €337/1000 l €412/1000 l 

Total aid €792/ha €736/ha €715/ha €933/ha 

Concentrated costs €443/cow €362/cow €266/cow €219/cow 

Operating expenses/GP 40% 38% 34% 29% 

Operating costs/litre 0.18 0.18 0.17 0.18 

Share of feed produced 36% 32% 42% 62% 

Asset value € 395 000 € 339 000 € 304 000 € 494 000€ 

Operating expenses/GP 40% 38% 34% 29% 
Notes: FC: fodder corn; MFA: main forage area; UAA: useful agricultural area; GP: gross product 

Table 2: Financial performance of farms. 

GM: gross margin per litre of milk; EBITDA: gross operating profit; GPM: margin rate; ROA: return on assets, DA: debt on 
assets; CF: net cash flow; GRA: annual growth rate of assets.  

 Corn system 1 Corn system 2 Grass system Organic system 
GM 222 €/1000 l 235 €/1000 l 260 €/1000 l 338 €/1000 l 
EBITDA 54.99 M€ 48.04 M€ 45.90 M€ 80.35 M€ 
Ratio M 7.91% 8.80% 11.81% 11.71% 
Ratio ROA 5.27% 5.75% 6.86% 7.43% 
Ratio DA 39.49% 35.93% 32.52% 45.09% 
Ratio NC -2 398 2 790 11 705 4 500 
Ratio GRA 0.057 0.049 0.029 0.126 
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Table 3: Distribution of farms by herd size. 

Number of dairy cows <40 dairy cows [ 40 – 60 ] dairy cows > 60 dairy cows 
Corn system 1 19% 48.5% 32.5% 
Corn system 2 22% 53% 25% 
Grass system 35% 47% 18% 
Organic system 10% 35% 54% 

 

Table 4: Milk productivity per cow of farms according to their system and herd size. 

Number of dairy cows <40 dairy cows [ 40 – 60 ] dairy cows > 60 dairy cows 
Corn system 1 7 681 litres/cow 7 554 litres/cow 7 798 litres/cow 
Corn system 2 7 096 litres/cow 7 134 litres/cow 7 206 litres/cow 
Grass system 6 630 litres/cow 6 366 litres/cow 6 143 litres/cow 
Organic system 6 914 litres/cow 6 088 litres/cow 5 912 litres/cow 

 

3.4.5.2 Effect of production system to economic performance 

The parameters associated with the fixed effects of the model are presented in Table 5. As expected, 
farm size, measured by the number of cows, significantly impacts almost all economic performance 
indicators, regardless of the production system. Profitability and return on assets indicators decrease 
with the size of the herd. On average, medium-sized farms experience a decrease in their margin and 
ROA compared to large farms by approximately 10%. The decline in profitability indicators reaches 
17% for small farms. It can be assumed that this drop in performance is related to the lower milk yield 
per cow in these smaller herd sizes and/or the lower dilution of breeding costs that are included in the 
margin calculation. The descriptive statistics do not confirm this hypothesis, since the operating ex-
penses per litre of milk are not significantly different according to the size of the farms (an average of 
between 0.17 and 0.18€/litre of milk for each size group) and the milk productivity is not lower for the 
smallest farms (cf. table 4). This effect of size would therefore be explained by economies of scale in 
the set of fixed costs. Several studies have previously described size as a driver of farm performance 
in dairy farms. Tauer and Mishra (2006) show that in American dairy farms, neither the variable cost 
of producing a unit of milk nor efficiency decreases significantly with farm size. Instead, the fixed cost 
of production per litre of milk decreases with farm size, and the farm becomes more profitable. How-
ever, Chavas (2001) argues that there is no evidence that these economies of scale persist beyond 
certain sizes. 

Regarding profitability indicators, the results of our statistical approach confirm the descriptive statis-
tics presented previously. The organic farms have on average a gross margin per litre of milk that is 
approximately 30% higher and a gross operating surplus that is approximately 40% higher than the 
other production systems in our sample. These results can be explained by their lower level of inter-
mediate consumption associated with a significantly higher selling price of milk. On the other hand, 
the positive effect of the organic system on the profitability indicators seems to be partly neutralised 
in the small farms. Thus, organic farms with fewer than 40 cows have lower profitability in terms of 
milk margin and EBITDA than other production systems. The lower margin per litre of milk can be ex-
plained by higher structural costs when compared to the total volume of milk produced. These higher 
structural costs, which can also penalize EBITDA, may be the result of higher wage costs or purchases 
of services (insurance, etc.) that are not compensated by the higher price of milk. 
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As far as the indicator of return on assets (ROA) is concerned, and although organic systems were on 
average better performing than all other production systems (see Table 1), we do not find these results 
from our econometric model on the solvency (DA) and profitability (ROA) criteria. In contrast, our re-
sults show a significant decrease in the ROA of organic farms. This informs us on two points. 

First, the lower ROA performance of organic systems can be explained by their investment strategy. 
Depending on the level of investment at the time of conversion, the level of structural expenses and 
assets in the denominator of the ratio, is more or less increased. This will mechanically translate into 
a decrease in the ROA ratio if the operating income, in the numerator, has not increased by the same 
proportion. It should be noted that many of the organic farms in our sample have been organic for less 
than 5 years. It is reasonable to estimate that it takes several years for an organic farm to generate 
profits proportionally higher than the capital invested at the time of conversion. It will be interesting 
to compare this result with the analysis of the performance of organic farms before, during and after 
conversion, which will be presented in the next section. 

These mixed results on the medium-term profitability of organic farms are consistent with those of 
Khanal and Mishra (2018), who show that the impact of organic production is variable depending on 
the production orientation and the level of sales. Uematsu and Mishra (2012) also showed that, alt-
hough they benefit from higher prices, organic farms also incur higher costs related to labour, market-
ing, and insurance, which are similar to structural expenses. We particularly find these effects in 
smaller organic farms. 

On the other hand, the difference between the average value of the ROA and the result of our estima-
tion shows that there is a strong diversity of organic farm models associated with different strategies 
and production conditions from one farm to another. Indeed, for some farms, the conversion to or-
ganic farming was accompanied by a strong increase in capital. Others, on the contrary, have main-
tained a low capital intensity. The heterogeneity of these farms may also stem from their very different 
adaptation strategies in the face of climatic shocks. Indeed, these systems are probably more sensitive 
to climatic hazards, as animal feeding is less based on the use of concentrates and purchased feeds 
that would compensate for variations in forage yields, as is the case in corn systems. Thus, faced with 
unfavourable weather conditions, these farms will have to make decisions to ensure the feeding of 
their herd, which will depend, among other things, on the characteristics of their farm (e.g., location 
and quality of their soil and plot of land, etc.) and their managerial capacity. The different strategies 
adopted by the farmers are probably another source of heterogeneity within the organic group. It is 
also possible that this greater heterogeneity is artificial in the sense that the number of organic farms 
observed is not sufficient to highlight effects based on average values. 

The comparative analysis of economic and financial performance between the different production 
systems allows us to highlight different determinants between non-organic and organic grazing sys-
tems, whereas one might have suspected similar results (Dieulot, 2015). Thus, although these two sys-
tems share common characteristics, in particular the search for food autonomy and spare manage-
ment of inputs (lower level of variable expenses), we observe a significant difference in the rate of 
increase of assets. Organic systems have much higher levels of investment, linked to greater quantities 
of dairy cows (compensating for the lower productivity per cow) for the same volume of milk, and 
more fodder stocks, whereas fixed expenses remain low in grassland systems. 
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Table 5: Estimation of fixed effects 
 GM EBITDA GPM ROA DA CF GCA 

Constant 207.05** 62.62** 12.59** 9.19** 32.98*
* 

28.18** -0.01 

Herd-size effect 
(small) 

-2.58** -36.30** -8.60** -5.96** -7.84** -25.90* 0.06 

Herd-size effect 
 (medium) 

2.11 -20.07** -1.98 -0.67 -6.32** -17.50** -0.03 

System effect 
(organic) 

70.09** 26.79** -3.19 -5.18** 3.10 18.65 0.20** 

System effect 
 (grassland) 

-4.04 -5.55 -1.85 -2.96 2.87 26.63** -0.04 

System effect 
 (fodder corn 2) 

-2.82 3.77 3.19* 0.81 3.08 9.49 0.03 

Interaction effect  
(organic*small) 

-26.80** -16.71** -2.36 -1.68 7.73* -6.34 0.05 

Interaction effect  
(organic * medium) 

-11.27 -20.49** -2.10 -0.47 -4.88 6.04 -0.002 

Interaction effect  
(grassland * small) 

-4.35 1.77 1.13 1.29 -0.36 -11.87 0.01 

Interaction effect  
(grassland * medium) 

-6.99 -1.44 -0.42 0.34 0.13 -11.63 0.04 

Interaction effect  
(corn 2* small) 

5.86* 2.78 1.58 1.36 -0.46 -4.82 -0.009 

Interaction effect  
(corn 2*medium) 

2.04 0.92 0.54 0.96 -0.41 -3.25 -0.02 

R2 0.80 0.75 0.60 0.59 0.77 0.70 0.32 
** and * statistically different from zero at the respectively 5% and 10% level of confidence. GM: gross margin per litre of 
milk; EBITDA: gross operating profit; GPM: margin rate; ROA: return on assets, DA: debt on assets; CF: net cash flow; GCA: 
annual growth rate of assets.  

3.4.5.3 Effect of conversion to an organic system 

Using the same approach as above, we seek to identify the effect of conversion, if any, on economic 
and financial performance. An effect related to the period before, during and after conversion is thus 
integrated into the model. We do not have enough observations in each size group to take into account 
a size effect. The constant corresponds to the farms before conversion. The parameters associated 
with the fixed effects of this model are presented in Table 6. 

Table 6: Fixed effects estimates 
 GM EBITDA GPM ROA DA CF GCA 

Constant 337.06*
* 

125.70** 31.17** 20.43** 45.29** 178.35** -1.65** 

Conversion effect (during) -33.54* -76.16** -18.19** -13.04** 7.12 -83.71** 1.58** 
Conversion effect (after) 13.86 -24.75 -16.15 -10.94** 14.77 -19.70** 1.00** 
R2 0.91 0.76 0.62 0.93 0.73 0.73 0.70 

** and * statistically different from zero at the respectively 5% and 10% level of confidence. GM: gross margin per litre of 
milk; EBITDA: gross operating profit; GPM: margin rate; ROA: return on assets, DA: debt on assets; CF: net cash flow; GCA: 
annual growth rate of assets.  

All profitability and cash flow indicators deteriorate during the conversion period, which is consistent 
with the increase in assets and the fact that the farms do not yet benefit from the capital gain on sale 
prices. After the conversion period, we observe, on the one hand, that even though all indicators have 
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improved, the ROA and net cash flow rates are still significantly lower than their pre-conversion levels 
and, on the other hand, that the profitability indicators (GM, EBITDA and GPM) are not significantly 
higher than their pre-conversion levels. We also note that the constant of all profitability indicators, 
which represents the average before the conversion period, is much higher than the constant obtained 
in the first full sample estimation model, which represents the average of the indicators for large farms 
in corn systems (Table 5). 

There are several possible explanations for these results. This may mean that the farms that convert 
to organic production have a higher profitability performance before conversion than the other sys-
tems in our sample. The positive impact of the organic group in the profitability models of the full 
sample (Table 6) would therefore not be directly related to the organic label alone but also to the 
specific characteristics of these farms. At the same time, it can be assumed that farms are gradually 
converting to organic farming, combining both conventional and organic farming. The transition to 
new practices and associated investments may therefore have started before the official conversion 
period (Argilés and Brown 2007). 

The high heterogeneity of farms in organic systems, or the low number of observations, may also ex-
plain the lack of significance of the post-conversion period on the indicators. It would be necessary to 
follow the farms converted to organic farming over a greater number of years after conversion to 
identify significant effects. The strong and relatively recent development of organic farming, however, 
does not allow us to access such data series. 

3.4.6 Discussion and conclusions 

In this work, we confirm some known results on the determinants of heterogeneity of economic and 
financial performance of organic dairy cattle farms. While organic farms have higher average profita-
bility and return indicators, we highlight other explanations for the differences in performance ob-
served in the sample. Following Wolf et al.'s (2016) approach, we use a mixed-effects panel model, 
which controls, in a simple way, for individual specifics via a random effect and time specifics via a 
fixed effect, to identify the impact of organic farming on performance via another fixed effect. 

As expected, farm size, measured by the number of cows, significantly impacts almost all economic 
performance indicators, regardless of the production system. However, if the organic farms have, on 
average, a higher gross margin per litre of milk and a higher gross operating profit compared to the 
other production systems in our sample, the effect of the size on the dilution of fixed costs and econ-
omies of scale takes a particular turn in the organic system. Indeed, it is difficult to increase the milk 
yield per cow by forgoing synthetic chemical inputs and by relying more heavily on a diet based on 
produced forages. Thus, we observe that the average annual growth rate of assets is higher for the 
organic farmers in our sample because of the increase in capital (herd) and stocks (forage) to produce 
the same volume of milk. In addition, despite lower variable costs per litre of milk (especially in feed 
purchases) and higher organic prices, additional fixed costs can occur in the organic system that are 
related to the workload or to the possible purchase of additional services. Consequently, only the larg-
est herd sizes (over 40 cows) manage to maintain higher average profitability, while small organic herds 
are less profitable. However, these results must be qualified according to the conversion trajectories 
followed by the farms, which are undoubtedly very heterogeneous (some resulting in higher capitali-
sation, others in maintaining the capitalisation level). 

Regarding the production system, while one could have expected comparable economic performances 
between organic and grassland farms, which are both seeking food and fodder autonomy, it appears 
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that the increase in assets is the prerogative of organic farms. The latter have higher levels of invest-
ment, linked to a larger number of dairy cows (compensating for lower productivity per cow) for the 
same volume of milk, as well as more fodder stocks, while fixed costs remain low in grassland systems. 

We then analyse the effects of the conversion period on the economic performance of the farms using 
data from several years of follow-up. Thus, the conversion period is accompanied by a decrease in 
profitability, but the farms in conversion seem to be more efficient at the beginning than the average 
of the farms in the sample. Furthermore, the growth of assets in the organic sector may, at least tem-
porarily, reduce their profitability if their income does not grow as fast as their assets. A longer obser-
vation period would allow us to have a more complete view of the long-term profitability of organic 
farms. 
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3.5.1 Introduction 

The sustainability of the agricultural sector is a key challenge. In Italy, in response to both market 
(Willer et al., 2021) and policy incentives (Casolani et al., 2021), an increasing number of farms have 
converted to organic production (Willer et al., 2021). Moreover, anecdotical evidence shows that, next 
to organic, other numerous schemes incentivising the uptake of ecological approaches in agriculture 
are in place (Schaller et al., 2020). However, the reduction of the intensity of agriculture is rather con-
troversial (Phalan et al., 2011), and relevant questions are to what extent different degree of ecological 
approaches are characterised in terms of productivity.  

This research investigates the impact of private investment and environmental subsidies on Italian 
farms’ performance, measured by total factor productivity (TFP) and two partial productivities, for the 
period 2010-2013. The analysis is performed, taking into account fixed farms characteristics, such as 
location, type of farming activities and the degree of ecological approaches.  

3.5.2 Description of the case study region 

Italy is a high-income country located in the South of Europe, with a population of 60.4 million inhab-
itants, being the majority (70%) urban. Italy has an extension of 302,073 km2 and a coastline of 7,468 
km (CARISMAND, 2016). Due to its rather longitudinal extension (1,180 km), Italy has a Mediterranean 
but diverse climate and geography. The climate in Northern regions is characterised by relatively long 
winters and extreme temperatures during winter and summer. The climate is milder, and summers are 
longer in Central Italy, with less temperature variation between seasons. The Southern regions and the 
islands have milder winters and hotter spring and autumns (Italian National Tourist Board, 2021). Ital-
ian topography is also diverse: 35% of its land is mountainous, 42% hilly, 23% plain. This geographical 
variety enables highly diversified agricultural systems and specialised agri-food products (CREA, 2020). 

Italy’s gross domestic product (GDP) in 2019 was 2.004 trillion Euro, and the GDP per capita stood at 
33,225 Euro (The World Bank, 2021), with however major regional differences. Agricultural areas rep-
resent 42% of the Italian land area, but the agricultural sector only represents 1.9% of the GDP. There 
are major regional differences also in terms of agricultural specialisations. Southern regions produce 
fruits, vegetables, olive oil, wine, and durum wheat; while grains, soybeans, meat, and dairy products 
are mainly produced in the North of Italy. In 2016, the majority of the Italian farms were specialist in 
permanent crops and arable crops (47% and 30%, respectively), followed by specialist herbivorous and 
mixed-cultivation (9% and 8%, respectively), while the least representative farm productive orienta-
tion was mixed-breeding (0.32%) (CREA, 2020).  
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3.5.3 Method 

The empirical analysis is divided into three steps: 1) farms’ performance estimation, 2) farms’ degree 
of ecological approaches classification, 3) exogenous and endogenous drivers of technical-economic 
farms’ performance levels assessment. 

In the first stage, to assess the technical-economic performance of the farm, we estimate two partial 
productivity indicators and the total factor productivity (TFP). The two partial productivity indicators 
we take into account are: i) the Average product of land and ii) the Average product of labour. The 
aforementioned indicators are estimated as depicted by Equation (1):   

                    𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 𝒑𝒑𝑷𝑷𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝑷𝑷𝑷𝑷𝒑𝒑𝑷𝑷𝑷𝑷𝒑𝒑𝑷𝑷 = 𝑶𝑶𝒑𝒑𝑷𝑷𝒑𝒑𝒑𝒑𝑷𝑷𝑷𝑷
𝑰𝑰𝑰𝑰𝒑𝒑𝒑𝒑𝑷𝑷𝑷𝑷

   (1)   

where, at time t, Partial productivity refers to the farms’ Average product of land or Average product 
of labour, Outputt represents the farms’ total output (in Euro), and Inputt stands for input land (in 
hectares) or input labour (in AWU5). 

We estimate TFP using the Levinsohn and Petrin (2003) method that assumes the production function 
to be Cobb–Douglas, as described by Equation (2): 

  𝒑𝒑𝑷𝑷 =  𝜶𝜶𝟎𝟎 + 𝜶𝜶𝒌𝒌𝒌𝒌𝑷𝑷 + 𝜶𝜶𝑷𝑷𝑷𝑷𝑷𝑷 + 𝜶𝜶𝒎𝒎𝒎𝒎𝑷𝑷 + 𝝎𝝎𝑷𝑷 + 𝜼𝜼𝑷𝑷       (2) 

where, at time 𝑡𝑡, 𝑦𝑦𝑖𝑖 represents the firms’ output, 𝑘𝑘𝑖𝑖 is the state variable for input capital, 𝑙𝑙𝑖𝑖 denotes 
the freely variable inputs (labour), 𝑚𝑚𝑖𝑖 represents input material (or intermediate inputs), 𝜔𝜔𝑖𝑖 is the 
state variable first error term component that assumes firms’ inputs choices to be influenced by the 
productivity derived from external factors (shocks), and 𝜂𝜂𝑖𝑖 is the second error term which is assumed 
to be uncorrelated with firms’ input choices. This approach uses materials (as energy, fertilisers, seeds, 
etc.) as proxies for unobservable productivity while accounting for the correlation between input levels 
and productivity (endogeneity), thus, avoiding inconsistent estimates or bias. The intermediate input 
𝑚𝑚𝑖𝑖 is assumed to be dependent on the state variables 𝑘𝑘𝑖𝑖  and 𝜔𝜔𝑖𝑖, hence: 𝑚𝑚𝑖𝑖 =  𝑚𝑚𝑖𝑖(𝑘𝑘𝑖𝑖 ,𝜔𝜔𝑖𝑖). After 
making assumptions on the firm’s production technology, Levinsohn and Petrin (2003) show that the 
demand function is repeatedly increasing in 𝜔𝜔𝑖𝑖, allowing for the inversion of the intermediate demand 
function and, hence: 𝜔𝜔𝑖𝑖 = 𝜔𝜔𝑖𝑖 (𝑘𝑘𝑖𝑖 ,𝑚𝑚𝑖𝑖). After the parameters’ estimation, the residuals of the estima-
tion of the TFP can be written as per Equation (3):  

 𝑻𝑻𝑻𝑻𝑷𝑷 =  𝜼𝜼𝑷𝑷 + 𝝃𝝃𝑷𝑷� =  𝒑𝒑𝑷𝑷 − 𝜷𝜷𝑷𝑷�𝑷𝑷𝑷𝑷 − 𝜷𝜷𝒌𝒌∗𝒌𝒌𝑷𝑷 − 𝐄𝐄�𝝎𝝎𝑷𝑷|𝝎𝝎𝑷𝑷−𝟏𝟏� �       (3) 

In the second stage, we classify the farms according to their degree of ecological approaches. We use 
two classification criteria. In the first classification, farms are categorised into 1) non-organic, 2) or-
ganic, and 3) transitioning into organic or “somehow organic”. In the second classification, we use the 
protocol developed by Rega et al. (2019). Such a protocol categorises farming systems into conven-
tional and three other non-mutually exclusive types, i.e., integrated, low-input, and organic farming. 
In order to apply the protocol, first, variables regarding the farms’ characteristics6 (i.e., altitude, geo-
graphical location) and productive inputs7 (i.e., electricity, livestock feed) were identified and adjusted 

                                                           
5 Annual working units (AWU), is a unit of measure that according to Eurostat (2019), refers to the full-time equivalent employment, in other 
words, 1 AWU corresponds to the work performed by one person who is occupied on an agricultural holding on a full-time basis, thus, no 
person can represent more than one AWU. In the case of Italy, we have used 1,800 hours as the minimum figure (225 working days of eight 
hours each). 
6 See description of farms’ characteristic variables in Annex 1. 
7 See description of productive input variables in Annex2. 
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using deflation coefficients and the European price index8. Subsequently, farms were classified accord-
ing to the bioregion where they belong to, using as indicators their geographical location and altitude. 
In Italy, farms can be considered Mediterranean, continental, and alpine9. Then, considering the type 
of farming classification (TF14 and TF8) and the farms’ bioregion, each farm received a score depending 
on the use, purchase, and production of productive inputs. Finally, a score was calculated as the 
weighted average of all assigned scores, as shown in Equation (4): 

 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑙𝑙 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = ∑ 𝑤𝑤𝑖𝑖∗𝑠𝑠𝑖𝑖𝑛𝑛
𝑖𝑖=1
∑ 𝑤𝑤𝑖𝑖
𝑛𝑛
𝑖𝑖=1

       (4) 

where, si  represents the score assigned to the i-th  variable, and wi is the corresponding weight. Farms 
that scored ≥ 3 were assigned to the assessed “Farming approach”. 

In the third stage of the analysis, we construct a correlational relationship that is designed to capture 
the effects of private investment and environmental subsidies, taking into consideration the farms’ 
characteristics (independent variables), on TFP (dependent variable), as represented in Equation (5): 

𝑃𝑃𝑠𝑠𝑠𝑠𝑃𝑃𝑠𝑠𝑠𝑠𝑚𝑚𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 =  𝛽𝛽𝑜𝑜𝑖𝑖𝑖𝑖  + 𝛼𝛼𝑗𝑗𝑖𝑖𝐼𝐼𝑁𝑁𝐼𝐼𝑖𝑖𝑗𝑗𝑖𝑖 + 𝛿𝛿𝑗𝑗𝑖𝑖𝐸𝐸𝐸𝐸𝑖𝑖𝑗𝑗𝑖𝑖 + 𝛾𝛾𝑗𝑗𝑖𝑖𝑂𝑂𝑃𝑃𝑖𝑖𝑗𝑗𝑖𝑖 + 𝜃𝜃𝑗𝑗𝑖𝑖𝑇𝑇𝐹𝐹𝑖𝑖𝑗𝑗𝑖𝑖 + 𝜇𝜇𝑗𝑗𝑖𝑖𝑅𝑅𝑖𝑖𝑗𝑗𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖  (5) 

for i =1,…,n and k =1,…,m. In equation (5), 𝑃𝑃𝑠𝑠𝑠𝑠𝑃𝑃𝑠𝑠𝑠𝑠𝑚𝑚𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 is the k-th real value response for the i-
th observation for farms’ partial productivity and TFP  at time 𝑡𝑡;  𝐼𝐼𝑁𝑁𝐼𝐼𝑖𝑖𝑗𝑗𝑖𝑖 is the j-th predictor for the 
i-th observation for investment/hectares in Euro at time 𝑡𝑡; 𝐸𝐸𝐸𝐸𝑖𝑖𝑗𝑗𝑖𝑖  is the j-th predictor for the i-th ob-
servation for environmental subsidies/hectares in Euro at time 𝑡𝑡; 𝑂𝑂𝑃𝑃𝑖𝑖𝑗𝑗𝑖𝑖 is the j-th predictor for the 
i-th observation for organic practices at time 𝑡𝑡 (OP predictor for 8 organic practices10); 𝑇𝑇𝐹𝐹𝑖𝑖𝑗𝑗𝑖𝑖 is the j-
th predictor for the i-th observation for farming type classification at time 𝑡𝑡 (TF predictor for 14 
farming type classification11); 𝑅𝑅𝑖𝑖𝑗𝑗𝑖𝑖 is the j-th predictor for the i-th observation for region at time 𝑡𝑡 
(G predictor for 21 Italian regions12 based on the Nomenclature of Units for Territorial Statistics 
(NUTS)-2 level);  𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 is a multivariate error predictor 𝑡𝑡. 

3.5.4 Data 

We use data extracted from the Farm Accountancy Data Network (FADN), which contains accounting 
information, such as income and business activities, of a representative sample of the EU farms. The 
sample is stratified according to region (NUTS2), economic size (SIZ6), and type of farming (TF14).  

From the whole set of observations, we constructed a balanced dataset. For the first stage of the anal-
ysis, the estimation of the TFP, the balanced panel data included farms’ information from 2004 to 2013. 
However, following the FADN-based protocol of “farming approach” implementation, the years 2004-

                                                           
8 More information in Comparative price levels of consumer goods and services: https://ec.europa.eu/eurostat/statistics-explained/in-
dex.php/Comparative_price_levels_of_consumer_goods_and_services#Price_levels_for_food.2C_beverages.2C_tobacco.2C_cloth-
ing_and_footwear. 
9 See description of farms’ bioregion in Annex3. 

10 Conventional, Low input, Integrated, Organic, Low input + Integrated, Low input + organic, Organic + integrated, Low input + organic + 
integrated 
11 15 Specialist COP, 16 Specialist other fieldcrops, 20 Specialist horticulture, 35 Specialist wine, 36 Specialist orchards – fruits, 37 Specialist 
olives, 38 Permanent crops combined, 45 Specialist milk, 48 Specialist sheep and goats, 49 Specialist cattle, 50 Specialist granivores, 60 Mixed 
crops, 70 Mixed livestock, 80 Mixed crops and livestock. 
12 1 Piemonte, 2 Valle d'Aosta/Vallée d'Aoste, 3 Liguria , 4 Lombardia, 5 P.A. Bolzano/Bozen, 6 P.A. Trento, 7 Veneto, 8 Friuli-Venezia Giulia, 9 
Emilia Romagna, 10 Toscana, 11 Umbria, 12 Marche, 13 Lazio, 14 Abruzzo, 15 Molise, 16 Campania, 17 Puglia, 18 Basilicata, 19 Calabria, 20 
Sicilia, 21 Sardegna. 
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2009 were discarded. The panel data that we use for the second stage of our analysis include infor-
mation of 2,117 Italian farms for the period 2010-2013 (8,468 observations) distributed among five 
macro-regions: Northwest (27.30%), Northeast (25.79%), Central (14.64%), South (25.27%), and Insu-
lar (6.99%) Italy. Most farms have an area smaller than 5 hectares (ha) and an economic size between 
8,000 Euro and 25,000 Euro. The main farms’ specialisations are field crops (31.41%) and other per-
manent crops (15.82%). During the considered period, 15.48% of the farms received environmental 
subsidies. 

Table 2: Description of variables, Italy 2010-2013 (panel data) 

  
Variable Measure-

ment 
Measurement 
(in FADN) 

Variable 
(in 
FADN) 

Mean Standard 
Deviation Min Max 

Variables 

 

Land ex-
tension 

Total Utilised Agricultural Area 
(in hectares –ha–) se025 28.58 51.11 0.12 763.5 

O
U

TP
U

T Output Value added  Farm net value 
added (in Euro) se415 65,008.01 165,430.1 -460,084 2,962,124 

Output Gross reve-
nue  

Total output (in 
Euro)  se131 116,119.50 285,172.4 0 7,105,055 

IN
PU

T 

Labour 
input Labour Total labour in-

put (in AWU) se010 1.79 1.69 0.06 22.17 

Labour 
input Cost of labour Total wages 

paid (in Euro) se370 8,313.99 26,656.73 0 322,400 

Material Intermediate 
input 

Total interme-
diate consump-
tion (in Euro) 

se275 51,707.68 152,384.7 215 5,431,983 

Capital 
input Capital 

Total assets (in-
cluding land) 
(in Euro) 

se436 761,296.60 1,589,821 5,475 26,866,323 

Capital 
input Fixed Assets Total fixed as-

sets (in Euro) se441 489,809.70 1,018,048 0 13,034,285 

Variables standardised per hectares 

O
U

TP
U

T 

Output Value added 
Farm net value 
added 
(Euro/ha) 

va_ha 7,770.08 30,600.18 -35,944.10    1,188,498 

Output Gross reve-
nue 

Total output 
(Euro/ha) (Av-
erage product 
of land) 

prod_la
nd 14,161.61 44,138.90 0 1,576,121 

IN
PU

T 

Labour 
input Labour Total labour in 

put (AWU/ha) lab_ha 0.36 0.77 0.003 13.58 

Labour 
input Cost of labour Total wages 

paid (in Euro) 
lcost_he
c 870.46    4,629.32           0 178,571.4 

Material Intermediate 
input 

Total interme-
diate consump-
tion (Euro/ha) 

mat_ha 4,939.52 14,819.59 27.20 458,391.4 

Capital 
input Capital 

Total assets (in-
cluding land) 
(Euro/ha) 

k_ha 69,717.23 124,356.5 498.29 2,587,711 

Capital 
input Capital 

Total assets (in-
cluding land) 
(Euro/ha) 

fix_ast_
ha 

41,950.31      70,552.7          0     1,920,305 

Source: authors’ calculation. (Notes: nr. of observations: 8,468). 

For the production estimation, different models were tested using two outcome variables (total output 
and net farm’s value added), and five input variables: total labour input and total wages paid (in Euro), 
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total intermediate consumption (in Euro), total assets (in Euro), and fixed assets (in Euro). All these 
variables were standardised by hectares, using the variable total utilised agricultural area (in ha). The 
description of these variables is shown in Table 1. After testing the models, a final model for the pro-
duction estimation was identified. This model uses as output indicator “Farm net value added 
(Euro/ha)”, as capital input “Fixed assets (Euro/ha) – including land value”, as labour input “Total la-
bour input (AWU/ha)”, and as material input “Total intermediate consumption (Euro/ha)”.  

3.5.5 Results 

The results of the estimation of the Levinsohn-Petrin productivity estimation from Equation (2) and 
Equation (3) suggest that the input variables (labour, capital, and materials) are strong determinants 
of the farms’ TFP, as shown in Table 2:   

Table 3: Total factor productivity (TFP) estimation, Italy 2004-2013 (panel data)13 

Variable lnValue-added (Euro/ha) 
lnLabour 0.395*** 
 (0.0130) 
lnCapital 0.0316* 
 (0.0187) 
Observations 20,276 
Groups 2,117 
Group variable (i) id 
Time variable (t) year 
Observations per groups Min = 10; Mean = 10; Max = 10 
Wald test of constant returns to scale Chi2 = 602.03 (p = 0.0000) 
Standard errors in parentheses. Significance levels: *** p<0.01, ** p<0.05, * p<0.1 

Source: authors’ calculation. 

Table 3 describes the farms’ performance variables obtained from Equation (1) and Equation (3), from 
the year 2010-2013, in total, and disaggregating them whether farms invested or not. Results show 
that, on average, farms that invest have higher levels of performance than farms that do not. 

Table 4: Results of correlational relationship, Italy 2010-2013 (panel data) 
Varia-
ble 

Observa-
tions Mean Min Max Observa-

tions Mean Observa-
tions Mean 

2010 Invested 2010 Did not invest 2010 
TFP 2,021 8,352.55 3.04 504,792.3 506 9,030.01 1,515 8,126.28 
P.P. 
Land 2,117 14,140.5

4 57.93 1,493,242 535 15,219.7
5 1,582 13,775.5

8 
P.P.  
Labour 2,117 51,877.5

2 
1,810.3
5 1,055,274 535 61,735.7

3 1,582 48,543.6
8 

2011 Invested 2011 Did not invest 2011 
TFP 2,034 7,243.64 15.08 330,155.2 428 7,757.88 1,606 7,106.6 
P.P. 
Land 2,117 14,648.9

6 51.81 1,576,121 453 13,085.6
4 1,664 15,074.5

5 
P.P. 
Labour 2,117 50,731.2 2,725 768,522.8 453 61,880.3

6 1,664 47,696.0
1 

2012 Invested 2012 Did not invest 2012 
                                                           
13 Table 2. shows the results obtained from the TFP estimation on the first stage dataset that corresponds to the period 2004-2013.  After 
implementing the FADN-based protocol of “farming approach”, data was restricted to 2010-2013. 
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TFP 2,002 6,890.55 23.24 351,180.8 511 8,069.22 1,491 6,486.6 
P.P. 
Land 2,117 14,155.6

8 123.82 1,453,637 543 19,688.4
5 1,574 12,246.9

8 
P.P. 

Labour 2,117 51,538.0
4 

2,930.8
8 736,028.3 543 59,009.9 1,574 48,960.3

9 
2013 Invested 2013 Did not invest 2013 

TFP 2,010 6,931.35 1.16 344,166.8 488 8,685.62 1,522 6,368.88 
P.P. 
Land 2,117 13,701.2

5 0 1,435,020 523 19,566.9
1 1,594 11,776.6

9 
P.P. La-

bour 2,117 50,332.2
2 0 654,088.4 523 53,750.6

6 1,594 49,210.6
1 

Source: authors’ calculation. 

Table 4 illustrates the results of the FADN protocol and suggests that although most Italian farms (70%) 
use conventional production techniques, a significant percentage of Italian farms (30%) have adopted 
some ecological practices. Such practices, in general, look either at reducing soil disturbance, optimis-
ing the use and management of production inputs, and being sustainable. Moreover, results show that 
integrated farming systems represent 20% of the farms, suggesting that production practices are in-
between organic and conventional among the farms studied. 

Table 5: FADN protocol farming system, Italy 2010-2013 (panel data) 

Farming system Frequency 
Conventional 5,931 (70.04) 
Low input 72 (0.85) 
Integrated 1,663 (19.64) 
Organic 275 (3.25) 
Low input + Integrated 323 (3.81) 
Low input + organic 22 (0.26) 
Organic + integrated 120 (1.42) 
Low input + organic + integrated 62 (0.73) 
Total 8,468 (100) 

Source: authors’ calculation. (Notes: percentage in parenthesis). 

The results obtained from the application of Equation (5), shown in Table 5, suggest that, on average, 
farms’ TFP, average product of land, and average product of labour are 0.87, 2.27, and 1.48 Euro higher 
for each Euro/ha invested. Moreover, farms that invest have on average more elevated levels of TFP, 
average product of land and average product of labour (8,407 Euro, 17,037 Euro, and 59,014 Euro, 
respectively) than those that do not invest (7,024 Euro, 13,240 Euro, and 48,592 Euro, respectively). 
These results hint at the fact that the farms’ investments are efficiently utilised to improve production 
inputs and show that investing, on average, has a positive and significant effect on farms performance 
levels. 

Concerning environmental subsidies, the results show that farms’ TFP and average product of land 
increase of 1.57 and 10.17 Euro per Euro/ha received. Previous research on the effect of agri-environ-
mental subsidies is inconclusive or ambiguous, showing different results depending on the composi-
tion of the sample, country characteristics, farms’ size and time horizon  (Arata & Sckokai, 2016; Baráth 
et al., 2020; Bernini et al., 2017; Latruffe et al., 2017; Latruffe & Desjeux, 2016; Mennig & Sauer, 2020; 
Nilsson, 2017). While other studies have found rather negative effects of subsidies on farms perfor-
mance (Mary, 2013; Minviel & De Witte, 2017; Rizov et al., 2013). However, our results are consistent 
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with those from the previous studies that show a positive relationship between subsidies and farms’ 
productivity (Mennig & Sauer, 2020; Vigani & Curzi, 2019). 

Regarding the degree of ecological approaches, results show that, on average, low-input, integrated, 
low-input+integrated, and organic+integrated farms have a significant negative relationship with TFP 
and partial productivities, while organic farms show a significant positive relationship with the average 
product of labour. Looking at the interactions between ecological approaches and investment results 
evidence that integrated and low-input+integrated farms that invest have a significant negative rela-
tionship with TFP and average product of land while organic+integrated farms have a significant neg-
ative relationship with average product of labour. However, low input farms that invest increase their 
level of TFP and average product of labour by 5.01 and 23.98 Euro for every Euro/ha they invest. Re-
garding the farms’ characteristics, the analysis suggests that there are significant differences among 
regions, showing that in general, Lombardia, Liguria and P.A. Trento are the best performing regions. 
Results also show significant differences among specialisations regarding farms specialist cereals, 
oilseeds and protein crops (COP). 

Table 6: Results of correlational relationship, Italy 2010-2013 (panel data) 

Variables TFP Average prod-
uct of land 

Average prod-
uct of labour 

Total investment/hectare 0.87*** 2.27*** 1.48** 
 (0.16) (0.50) (0.64) 
Environmental subsidies/hectare 1.57*** 10.17*** -1.95 
 (0.45) (1.46) (1.88) 

Farms’ ecological practices with respect to “1, conventional” 
2, Low input -1,167.98 -8,119.10* -1,708.80 
 (1,482.75) (4,746.34) (6,127.08) 
3, Integrated -4,262.10*** -13,173.68*** -21,187.84*** 
 (373.51) (1,174.79) (1,516.54) 
4, Organic -296.36 -4,023.48 9,172.00*** 
 (782.67) (2,495.79) (3,221.84) 
5, Low input + Integrated -3,734.50*** -10,095.00*** -20,691.25*** 
 (729.95) (2,311.87) (2,984.41) 
6, Low input + organic 73.79 -3,300.23 12,117.34 
 (2,610.85) (8,421.57) (10,871.46) 
7, Organic + integrated -2,156.67* -7,260.74** -5,544.73 
 (1,140.55) (3,665.42) (4,731.72) 
8, Low input + organic + integrated -2,521.20 -8,464.65* -164.43 
 (1,595.66) (5,143.90) (6,640.30) 
Interaction between farms’ ecological practices and total investment/hectare with respect to “1, conventional # total 

investment/hectare” 
2, Low input # total investment/hectare 5.01** 9.50 23.98*** 
 (1.97) (6.34) (8.19) 
3, Integrated # total investment/hectare -1.09*** -3.91*** -0.55 
 (0.29) (0.91) (1.17) 
4, Organic # total investment/hectare -0.87 -1.05 -2.34 
 (0.81) (2.24) (2.89) 
5, Low input + Integrated # total investment/hectare -3.05** -12.68*** -3.42 
 (1.42) (4.59) (5.92) 
6, Low input + organic # total investment/hectare -2.53 116.67 1,879.39 
 (571.10) (1,843.28) (2,379.50) 
7, Organic + integrated # total investment/hectare -1.34 -0.86 -10.31* 
 (1.34) (4.31) (5.57) 
8, Low input + organic + integrated # total investment/hectare 0.41 -1.31 -20.12 
 (8.01) (25.86) (33.38) 
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Farms’ geographical region with respect to “9, Emilia Romagna” 
1, Piemonte - (ITC1) -179.71 -2,990.25 11,520.21*** 
 (911.81) (2,855.53) (3,686.22) 
2, Valle d'Aosta/Vallée d'Aoste - (ITC2) -2,545.60** -2,370.55 -50,043.37*** 
 (1,121.82) (3,557.78) (4,592.76) 
3, Liguria - (ITC3) 4,115.33*** 15,624.43*** -16,350.16*** 
 (819.22) (2,580.82) (3,331.60) 
4, Lombardy - (ITC4) 3,195.98*** 2,419.40 26,458.52*** 
 (706.30) (2,220.99) (2,867.09) 
5, P.A. Bolzano/Bozen - (ITH1(new)-ITD1(old)) 1,736.79* 4,011.23 -25,347.71*** 
 (974.28) (3,026.87) (3,907.40) 
6, P.A. Trento - (ITH2(new) -ITD2(old)) 2,596.26*** 8,619.18*** -6,740.33* 
 (969.25) (3,006.58) (3,881.22) 
7, Veneto - (ITH3(new) -ITD3(old)) 898.34 209.45 10,300.44*** 
 (737.45) (2,291.70) (2,958.37) 
8, Friuli-Venezia Giulia - (ITH4(new) -ITD4(old)) -1,137.33 -3,166.45 3,689.70 
 (851.85) (2,622.98) (3,386.03) 
10, Toscana - (ITI1(new) -ITE1(old)) -393.35 -1,186.76 -14,175.23*** 
 (937.57) (2,914.32) (3,762.11) 
11, Umbria - (ITI2(new) -ITE2(old)) -499.83 -1,634.44 -10,409.85*** 
 (812.57) (2,560.16) (3,304.93) 
12, Marche - (ITI3(new) -ITE3(old)) -2,398.65*** -3,482.91 -28,129.75*** 
 (884.72) (2,757.86) (3,560.14) 
13, Lazio - (ITI4(new) -ITE4(old)) 796.08 -491.11 -6,925.84 
 (1,110.04) (3,472.84) (4,483.12) 
14, Abruzzo - (ITF1) -2,432.10*** -2,806.97 -28,020.54*** 
 (856.19) (2,689.07) (3,471.34) 
15, Molise - (ITF2) -1,772.66** -2,499.74 -30,481.33*** 
 (814.34) (2,558.08) (3,302.25) 
17, Puglia - (ITF4) -1,583.82* -2,034.59 -17,607.87*** 
 (885.36) (2,780.23) (3,589.02) 
18, Basilicata - (ITF5) -2,268.62*** -2,286.61 -26,702.75*** 
 (787.74) (2,462.95) (3,179.44) 
19, Calabria - (ITF6) 536.17 -1,030.84 -26,729.38*** 
 (848.01) (2,693.79) (3,477.43) 
20, Sicilia - (ITG1) -1,897.17** -2,524.93 -19,315.30*** 
 (804.61) (2,530.34) (3,266.44) 
21, Sardinia - (ITG2) -185.57 -610.29 -3,382.22 
 (1,267.82) (4,038.15) (5,212.88) 
Farms’ specialisation with respect to “15, Specialist COP” 
16, Specialist other fieldcrops 3,898.11*** 8,039.39*** 5,825.28** 
 (580.96) (1,819.17) (2,348.37) 
20, Specialist horticulture 16,358.35*** 59,903.48*** 7,209.84** 
 (702.53) (2,207.23) (2,849.34) 
35, Specialist wine 4,985.20*** 9,154.83*** -2,205.18 
 (567.01) (1,767.43) (2,281.59) 
36, Specialist orchards - fruits 6,152.05*** 11,153.19*** -1,211.81 
 (624.33) (1,967.84) (2,540.30) 
37, Specialist olives 2,819.41*** 4,812.06* -4,759.60 
 (841.56) (2,661.16) (3,435.31) 
38, Permanent crops combined 3,224.81*** 5,777.43** -5,862.38* 
 (822.54) (2,604.20) (3,361.78) 
45, Specialist milk 4,291.86*** 5,322.74*** 40,363.01*** 
 (564.35) (1,776.11) (2,292.79) 
48, Specialist sheep and goats 1,858.07** 3,914.97 -313.38 
 (798.44) (2,495.85) (3,221.91) 
49, Specialist cattle 2,395.18*** 3,419.64 24,159.71*** 
 (713.41) (2,213.37) (2,857.25) 
50, Specialist granivores 12,452.40*** 24,386.26*** 99,584.86*** 
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 (892.15) (2,805.45) (3,621.57) 
60, Mixed crops 2,195.53*** 4,441.89** -8,987.35*** 
 (625.80) (1,961.40) (2,531.98) 
70, Mixed livestock 2,302.81 5,035.70 8,216.27 
 (2,760.90) (8,677.71) (11,202.12) 
80, Mixed crops and livestock 1,617.23** 3,797.27 -4,699.31 
 (768.36) (2,403.38) (3,102.55) 
Constant 2,817.14*** 2,910.66 56,173.43*** 
 (684.06) (2,131.20) (2,751.18)     
Observations 8,067 8,468 8,468 
R-squared 0.22 0.26 0.29 
Number of years 4 4 4 

Standard errors in parentheses. Significance levels: *** p<0.01, ** p<0.05, * p<0.1. Source: authors’ calculation. 

3.5.6 Discussion and conclusions 

This analysis provides insights into the relationship between private investment, agri-environmental 
subsidies, and farms’ productivity, covering the period 2010-2013, using a balanced panel extracted 
from the FADN. Using fixed-effects panel analysis, we estimate the impact of investment, agri-environ-
mental subsidies and different measures of ecological approaches on the farms' performances, proxied 
through the TFP and two partial productivity indicators. We contribute to the existing literature by 
looking at the effects of private investment and agri-environmental subsidies on farms’ productivity, 
which are critical issues in applied policy analysis. 

Results indicate that shifting from conventional to more ecologically-sound type of farming exhibits 
trade-offs in terms of reduction in productivity, both total and partial. These trade-offs can, however, 
be mitigated by investments. Indeed, our results show a consistently positive and significant relation-
ship between agricultural investment and farms’ performance, measured by TFP and average product 
of land and labour. Compared to previous studies, our research supports the positive relationship be-
tween environmental subsidies and farms’ TFP and average product of land. On the one hand, these 
findings suggest the importance of fostering and enhancing private investment in farms to continue 
improving the holdings’ productivity. On the other hand, they suggest the efficient allocation and use 
of the public resources in the shape of subsidies to foster farms’ productivity.  

This research is not free of limitations. The number of observations could be limited to represent Italy, 
but our sample is the only balanced data useful for panel analysis over the entire period. Another 
consideration is that for all farms, we normalised all nominal values by hectares without considering 
the type of farming activity, which might limit the results for breeding farms. A complete assessment 
of the performance of farms supposed an economic, job, social and environmental analysis; yet, the 
FADN data lack information regarding jobs, providing insufficient information on environmental issues 
(e.g., FADN data provide only values and not quantities of pesticides and fertilisers). 
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3.6.1 Introduction 

This case study (CS) report of deliverable D3.1 of the LIFT project presents the results of the technical 
and economic performance of arable farms in Sweden. The aim of this CS report is to feed D3.1 on 
farm technical-economic performance depending on the degree of ecological approaches in workpack-
age (WP) 3 of LIFT. 

The analysis is based on FADN data for the period 2010-2016. Two methodological approaches for 
analysing the technical efficiency (TE) and the economic performance of arable farms in Sweden were 
used. The TE analysis was based on a stochastic frontier approach, incorporating variables on the de-
gree of ecological approaches and factors driving the TE of the farms. The economic performance of 
farms was estimated by standard economic indicators of profitability, partial productivity and long-
term financial stability and dependence on subsidies. 

3.6.2 Description of case study region 

Swedish crop production is dominated by cereals and grassland. Climate and production conditions 
and thereby crop distribution and yields vary across different areas. Yields per hectare are largest in 
the plain districts. Bread grains are mostly grown in the plain districts of south and central Sweden, 
whereas in the north, crop production mostly comprises forage and coarse grains. Oilseed production, 
is also located in the southern and central areas. Potatoes are grown in all parts of Sweden, sugar beets 
are only grown in the southernmost parts. 

The agricultural crop production in Sweden faces several economic and ecological challenges; where, 
ecological approaches/management practices such as organic farming, crop rotation practices, cultivar 
mixtures, ploughing/no-tillage and low use of chemicals are among the most common for coping and 
responding to these challenges. These approaches can be considered individually or in combination.  

Compared to the remaining ecological approaches, the promotion of organically certified agriculture 
is high on the agenda of the Swedish food strategy 2030, both in terms of production and consumption. 
By 2030, organic farming is targeted to 30 % organically certified area, and 60 % consumption of or-
ganic food products within the public sector (Regeringskaseliet, 2018). In Sweden 20 % of the total 
agricultural area is certified as organic, and there is a constant increasing trend of further convention, 
both for the agricultural land and pastures (Jordbruksverket, 2020). The national goal set for 2030 of 
30 % organically certified area is yet to be achieved.   
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3.6.3 Methodological approaches  

Two methodological approaches for analysing the technical- and the economic performance of arable 
farms in Sweden were used. Stochastic frontier approach was used for the TE analysis. The analysis 
incorporated variables on factors driving the technical performance of the farms with a main focus on 
the degree of ecological approaches. The economic performance of farms was estimated by standard 
economic indicators of profitability, partial productivity, long-term financial stability and dependence 
on subsidies. 

3.6.3.1 Technical efficiency analysis 

3.6.3.1.1 Data and variables 
The empirical data used for estimating the TE is an unbalanced panel of data for 215 individual crop 
farms and a total of 943 observations of arable farms from the Swedish farm accounting data network 
(FADN) database for the period 2010-2016. The dataset provided detailed information on variables to 
be used for estimating the TE model for the arable production. Descriptive statistics of variables used 
for the TE analysis is presented in Table 1.  

Table 1: Descriptive statistics of variables included in the technical efficiency analysis (n=5073)  

Continuous variables Symbol Unit Mean Std. Dev. FADN Definition  
Arable land area x1 ha 109.93 105.05 SE025 

Labour x2 hours 2944.3
8 3097.1 SE010 

Fixed cost x3 1000 SEK 774.00 144 SE360 + SE370 + 
SE375 + SE380 

Intermediate cost x4 1000 SEK 235.00 379 SE275 
Total revenue of agricultural outputs y 1000 SEK 2274 3448 SE131 
Crop diversity index two years before z3 - 0.79 0.18  

Crop diversity index current year CDI - 0.79 0.18  

Herfindahl index HI - 0.21 0.18  

CAP subsidy for environmental protec-
tion  z1 1000 SEK 84.75 287 FJ0426 

CAP subsidy z2 1000 SEK 337.00 449 SE605 
Dummy variables Symbol Unit % of 1 Obs. no. of 1 Obs. no. of 0 
Organic farming (1 = either partly or-
ganic production, or fully organic pro-
duction, or in shift process of organic 
production; 0 = no organic production 
at all) 

z4 - 8.06 867 76 

Main crop change (1 = at least the 
main crop has been changed in past 
years, 0 = otherwise) 

z5 - 28.1 265 678 

Year of policy shock (1 = year later 
than 2013, 0 = otherwise) z6 - 28.31 267 676 

 The crop diversity index in the past two years was calculated using data from 2009 to 2015 
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In the stochastic frontier production function, we have one output and four inputs (Table 1). The out-
put is represented with total revenue of agricultural outputs (y), which means all farm revenue ob-
tained from the production and agricultural activities. The unit of measurement was 1000 Swedish 
Kronor (1000 SEK), deflated with the respective national output price index, with 2010 as the base 
year. Inputs were aggregated as follows: i) the arable land area (x1), which means utilised agricultural 
area (UAA) in hectares, including both arable and grazing area; ii) labour (x2), showing the total labour 
input including family and hired of the farm, expressed in total working hours; iii) fixed costs (x3), which 
is represented by the total costs of capital use, including: depreciation, maintenance of buildings and 
machinery, rents and insurance; iv) intermediate cost (x4), which includes total costs of seeds, fertilis-
ers, crop protection, feed, energy and other specific costs. The inputs given in value units (material and 
capital costs) were measured in 1000 SEK, deflated with the respective national input price index (base 
year 2010). Information on the national output price and input price index was obtained from the 
Swedish Board of Agriculture (Swedish Board of Agriculture 2015). 

The determinants of technical inefficiency were explained in the lower part of Table 1. The first pos-
sible technical inefficiency determinant variable was the variable of CAP subsidy for environmental 
protection (z1). The other subsidy (z2) was also introduced in the technical inefficiency model.  

We also investigated how the degree of ecological approaches is associated with TE of crop produc-
tion. The degree of ecological approaches was represented by three variables: i) crop diversity index 
in the past two years (z3); ii) organic farming (z4) and iii) crop rotation (z5). In Sweden, organic farming, 
crop rotation and cultivar mixtures practices, are among the most common ecological approaches for 
coping and responding to environmental challenges. In regard to the LIFT farm typology, organic farm-
ing is clearly represented. In addition, crop rotation is a common practice for agroecology, integrated 
farming and conservation agriculture, and diversification/polyculture is common for agroecology (Rega 
et. al, 2018). 

We calculated the CDI through the equation 𝐶𝐶𝐶𝐶𝐼𝐼 = 1 −𝐻𝐻𝐼𝐼, where HI is the the Herfindahl index. HI 
is defined as equation 𝐻𝐻𝐼𝐼 = ∑ 𝑃𝑃𝑖𝑖2𝑛𝑛

𝑖𝑖=1 , where 𝑃𝑃𝑖𝑖 is the proportion of area planted by the crop 𝐹𝐹, 𝑃𝑃𝑖𝑖 =
𝐴𝐴𝑖𝑖

∑ 𝐴𝐴𝑖𝑖𝑛𝑛
𝑖𝑖=1

, 𝐴𝐴𝑖𝑖  is the area of the crop 𝐹𝐹, 𝐹𝐹 is each of the crops such as ley, barley, wheat, oat etc. In the 

literature, e.g. Smale et al. (2008) Herfindahl index has been used to capture the area distribution of 
varieties. A Herfindahl value of 1 indicates the farm planted a single crop while a value of 0 indicates 
that a large number of crop varieties were planted in the farm. HI can be calculated from the FADN 
dataset, and then we can get CDI and CDI lagged in past two years. The CDI is directly related to the 
diversification in the farm by taking into account the area size of each crop, it ranges with the value 
between 0 and 1, the greater the number of CDI, the higher degree of crop diversification. Whereas, 
the greater the number of HI, the higher the monoculture in the arable land.  

Crop rotation is alternating annual crops grown on a specific field in a planned pattern or sequence in 
successive crop years, for improving the soil quality. Because we cannot derive the position of a specific 
crop in an individual farms from the FADN database, we instead investigate the main crop change to 
reflect the practice of crop rotations. Main crop means the crop planted with the largest planting area 
in our sample. As listed in Table 2, for the sample included in the analysis the largest crops planted are 
ley, wheat and corn. Ley is planted with 45.39% of arable land area, following by cereals (wheat and 
corn with land area of 19.72% and 17.6% respectively). The second largest crops planted are beet, corn 
and oat. They are planted with 22.4%, 19.94%, and 12.97% planted areas respectively. As listed in Table 
1, the mean of main crop change is 0.281, which means 265 observations out of 943 observations had 
rotated the main crop planted. 
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Table 2: Main crops planted in Sweden  

Code in FADN Crop % of total arable land area 
The largest planted crops 
FK1161 ley 45.39 
FK0491 wheat 19.72 
FK0521 corn 17.6 
The second largest planted crops 
FK1191 beet 22.4 
FK0521 corn 19.94 
FK0531 oat 12.97 

 

The third variable representing an ecological approach is organic farming (z4). We have the dummy 
variable of organic farming to be either 1 or 0, whereas 1 means the farm had either partly organic 
production, or fully organic production, or it was in the shift process to organic production. 0 meant 
the farm was not organic at all. The mean of organic farming was 0.081, which indicated major obser-
vations are relevant to no organic farming at all in the sample.  

The last technical inefficiency determinant is year of policy shock, with that we want to see how policy 
change affected the production performance. There was the Common Agricultural Policy (CAP) reform 
in 2013, when the mandatory greening component of direct payments was introduced to promote 
sustainable land use (European Union, 2013). So we generated a dummy assigned with 1 to show pe-
riod after the policy change, when the year was later than 2013, and 0 otherwise.   

3.6.3.1.2 Stochastic frontier approach 
The parametric Stochastic Frontier Approach (SFA) (Aigner et al. 1977; Meeusen and Broeck 1977), 
conducted in STATA, was applied. SFA estimates farm TE by measuring the distance between the ob-
served and “best” feasible input-output combination of farms given the highest possible amount of 
output/revenue that can be obtained (while keeping the amount of inputs fixed), i.e. it is an output-
oriented approach (Coelli et al. 2005). Where balanced panel data are available, models for panel data 
are preferable and can be expected to control for unobserved differences between observations, cap-
turing the ‘firm effect’ and adding a time dimension to the analysis (Fried et al. 2008; Parmeter and 
Kumbhakar 2014). However, the present analysis was based on a rotating unbalanced panel dataset 
where, with large numbers of farms that appeared for a period shorter than three years, pooled data 
model was deemed as more appropriate. The Trans-log production function was selected after we 
tested and compared the Trans-log production function and Cobb-Douglass production function, de-
tails of the test were displayed in Table 4 in the results section. 

The Trans-log stochastic frontier production function equation (1) specification was as follows: 

𝑙𝑙𝐹𝐹𝑦𝑦𝑖𝑖 = 𝛼𝛼0 + �𝛽𝛽𝑖𝑖𝑙𝑙𝐹𝐹𝑥𝑥𝑖𝑖𝑖𝑖 +
1
2
��𝛽𝛽𝑖𝑖𝑘𝑘𝑙𝑙𝐹𝐹𝑥𝑥𝑖𝑖𝑖𝑖𝑙𝑙𝐹𝐹𝑥𝑥𝑖𝑖𝑘𝑘 +

4

𝑘𝑘=1

4

𝑖𝑖=1

4

𝑖𝑖=1

𝑣𝑣𝑖𝑖 − 𝑢𝑢𝑖𝑖 (1) 

In the Trans-log stochastic frontier production function the output of farm revenue yi obtained for the 
𝐹𝐹𝑖𝑖ℎ farm is a function of the inputs  𝑥𝑥𝑖𝑖  used in the production process; 𝑙𝑙𝐹𝐹 denotes the natural logarithm; 
𝛼𝛼0 is a constant term;  𝛽𝛽 and 𝛾𝛾 are parameters to be estimated; 𝑣𝑣𝑖𝑖 is random noise, independently and 
identically distributed 𝑁𝑁(0, 𝜎𝜎𝑣𝑣2);  and 𝑢𝑢𝑖𝑖 an inefficiency term. In the empirical specification of Trans-
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log production function, we have one output of total revenue of agricultural outputs and four inputs 
x1of arabland area, x2 of labour, x3 of fixed costs and x4 of the intermediate cost. 

In a stochastic frontier model with output-oriented specification, the inefficiency term 𝑢𝑢𝑖𝑖 represents 
the log difference between the maximum attainable output and the actual output (Kumbhakar et al. 
2015). For equation (1), 𝑢𝑢𝑖𝑖 = 𝑙𝑙𝐹𝐹𝑦𝑦𝑖𝑖∗ − 𝑙𝑙𝐹𝐹𝑦𝑦𝑖𝑖  and the inefficiency term is then: exp (−𝑢𝑢𝑖𝑖) = 𝑦𝑦𝑖𝑖

𝑦𝑦𝑖𝑖
∗ . Since the 

observed output is bounded below the frontier output level (the maximum attainable output), 𝑢𝑢𝑖𝑖 ≥ 0 
and the value of the estimated TE coefficient ranges between 0 and 1, denoting farm TE of between 
0% and 100%.  

The inefficiency variance function (Battese and Coelli 1995) in equation (3) is explained by 𝑧𝑧𝑖𝑖, the vec-
tor of variables associated with the inefficiency sources; 𝛿𝛿, the parameter to be estimated and 𝑤𝑤𝑖𝑖, 
which are the unobservable random variables, assumed to be independently distributed and obtained 
by truncation of the normal distribution with zero mean and unknown variance 𝜎𝜎𝑤𝑤2 , such that 𝑢𝑢𝑖𝑖 ≥ 0.  

𝑢𝑢𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑒𝑒𝛿𝛿𝑖𝑖 + 𝑤𝑤𝑖𝑖 (2) 

The constant 𝛼𝛼 in equation (1) and the parameters 𝛽𝛽, 𝛾𝛾 and 𝛿𝛿 in equations (1)-(2) were estimated 
simultaneously, thereby excluding the possibility of producing biased results with the two-step ap-
proach (Wang and Schmidt 2002). In the empirical model, we have 7 inefficiency determinants z1 of 
CAP subsidy for environmental protection (z1), which was represented by the code FJ0426 in FADN 
dataset, z2of the other subsidy, z3 of crop diversity index in past two years, z4 of the degree of diver-
sification/crop rotation in terms of crops, z5 of the organic farming, and z6for year of policy shock.  

3.6.3.1.3 Indicators of economic farm performance 
Data for farms specialising in arable production were used. Farm selection was based on the standard 
FADN typology for farm specialisation. The empirical data used for estimating the economic perfor-
mance of farms is an unbalanced panel of 989 observations of arable farms from the Swedish farm 
accounting data network (FADN) database for the period 2010-2016.  

The economic performance of farms was estimated with standard economic indicators of profitability, 
partial productivity, and long-term financial stability and dependence on subsidies. Profitability indica-
tors represent the revenue cost ratios (i.e. revenue indicator / cost indicator), where a ratio > 1 means 
a farm can cover all costs. Partial productivity indicators show the average number units of output are 
produced by one unit of a respective input. Indicators of economic farm performance, with respective 
definitions are summarised in Table 3. 

Table 3: Definitions of indicators of economic farm performance 

Name Description Definition in FADN 
Profitability indica-
tors 

  

Private revenue-cost-
ratio not considering 
remuneration of 
owned production 
factors 

Revenue / (intermediate expenses+ 
depreciation + paid interest + paid la-
bour + paid rent).  
Expresses ability of a farm to cover 
costs, not having to cover costs for 
owned production factors, with its pri-
vate revenues. 

SE131 / (SE275 + SE360 + SE370 + 
SE375 + SE380) 
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Public revenue-cost-
ratio not considering 
remuneration of 
owned production 
factors 

(Revenue + subsidies) / (intermediate 
expenses + depreciation + paid interest 
+ paid labour + paid rent).  
Expresses ability of a farm to cover 
costs, not having to cover costs for 
owned production factors, with its pri-
vate revenues and public subsidies 

(SE131 + SE605) / (SE275 + SE360 
+ SE370 + SE375 + SE380) 

Private revenue-cost-
ratio considering re-
muneration of 
owned production 
factors 

Revenue / (intermediate expenses + 
depreciation + (assets * imputed inter-
est rate) + (total labour in hours * im-
puted wage per hour) + (land * im-
puted rent))  
Expresses ability of a farm to cover all 
costs, including those for owned pro-
duction factors with its private revenue 

SE131 / SE275 + SE360 + (SE436 * 
imputed interest rate) + (SE011 *  
imputed wage per hour) + (SE025 
* imputed rent per ha)  

Public revenue-cost-
ratio considering re-
muneration of 
owned production 
factors 

(Revenue + subsidies) / (intermediate 
expenses + depreciation + (assets * im-
puted interest rate) + (total labour in 
hours * imputed wage per hour) 
+ (land * imputed rent))  
Expresses ability of a farm to cover all 
costs, including those for owned pro-
duction factors with its private revenue 
and public subsidies 

(SE131 + SE605)/ SE275 + SE360 + 
(SE436 * imputed interest rate) + 
(SE011 *  imputed wage per hour) 
+ (SE025 * imputed rent per ha)  

Partial productivity indicators 
Average product of 
land  

Partial productivity indicator, describ-
ing output per unit of the input land 

SE131 / SE21  
Output / land  

Average product of 
labour 

Partial productivity indicator, describ-
ing output per unit of the input labour 

SE131/SE010 
Output / labour in AWU 

Average product of 
assets 

Partial productivity indicator, describ-
ing output per unit of the input assets 

SE131/SE436 
Output / assets 

Average product of 
intermediary ex-
penses 

Partial productivity indicator, describ-
ing output per unit of the input inter-
mediary expenses 

SE131/SE275 
Output / intermediary expenses 

Additional indicators   
Market orientation Revenue / (Revenue + subsidies) 

Describes how much a farm relies on 
public subsidies, compared to private 
revenues 

SE131 / (SE131 + SE605) 

Equity ratio Equity / total assets 
Share of the assets financed by the 
farmers.  

SE501 / SE436 

 

3.6.4 Results and discussion 

In this section, we present the results of the two analytical approaches, i.e. the TE analysis and the 
standard economic indicators of profitability, productivity, long-term financial stability and farm de-
pendence on subsidies.  
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3.6.4.1 Analysis on technical efficiency performance of the arable farms in Sweden 

3.6.4.1.1 Hypothesis tests and production function selection  
Table 4 provides results on the hypothesis tests for model specification and statistical assumptions. 
Before deciding on the specifications for the final version of the model we first tested the hypothesis 
for the model specification and variable selection, e.g. whether to choose a Cobb-Douglass production 
function or Translog production function and how variables in the technical inefficiency model are 
selected. The test 1 and test 2 were designed to test whether the Cobb-Douglass production function 
or the Translog production function fits better. According to the Likelihood Ratio (LR) test, we can see 
either in Test 1 or in Test 2, that the Translog production function fitted the data better than Cobb-
Douglass production function statistically significantly.  

LR tests were also applied to examine the effect of ecological approaches on technical inefficiency. The 
null hypothesis states that ecological approaches had no effect on technical inefficiency. Test 3 indi-
cated that z1 of CAP subsidy for environmental protection and z2of the other subsidy had no effects 
on the technical inefficiency. Test 4 indicated that z3 of crop diversity index in the past two years had 
no effects on the technical inefficiency. Test 5 indicated that z4 of the degree crop rotation had no 
effects on the technical inefficiency, Test 6 indicated that z5 of the organic farming did not affect the 
technical inefficiency, as well as the Test 7 for the year of policy shock. The LR tests results rejected all 
above null hypothesis, which confirmed that variable represented the ecological approaches should 
be considered in the technical inefficiency model.  

Table 4: Hypothesis tests for model specification and statistical assumptions 

Test Null hypothesis Log-likelihood 
value D.F. AIC BIC 

For selection of production function 

1 H0: Cobb-Douglass production function with-
out technical inefficiency model  -367.4282 7 748.8563 782.7998 

 H1: Translog production function without 
technical inefficiency model -356.0229 17 746.0457 828.4798 

2 H0: Cobb-Douglass production function with 
technical inefficiency model  -326.9812 13 679.9625 743.0003 

 H1: Translog production function with tech-
nical inefficiency model -317.8008 23 681.6017 793.1302 

For specification of technical inefficiency model 
 H1: Unlimited model -317.8008 23 681.6017 793.1302 
3 H0: 𝜔𝜔1 = 𝜔𝜔2 =0 -348.3794 21 738.7589 840.5893 
4 H0: 𝜔𝜔3 =0 -321.2311 22 686.4622 793.1416 
5 H0: 𝜔𝜔4 =0 -318.8712 22 681.7423 788.4218 
6 H0: 𝜔𝜔5 =0 -317.9999 22 679.9997 786.6792 
7 H0: 𝜔𝜔6 =0 -320.1952 22 684.3904 791.0699 

 

3.6.4.1.2 Estimates for the stochastic production function  
Maximum likelihood estimates of the stochastic production function were presented in Table 4. In 
order to facilitate the interpretation of the parameter estimates, the output variable and the four input 
variables were divided by their respective sample means. Hence, the estimated first-order parameters 
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of the Translog production function can be interpreted as partial production elasticities at the sample 
mean (Glauben et al., 2002).  

Model 1 is the production function without specifying the technical inefficiency, which were detailed 
estimates for the hypothesis H1 of Test 1 in Table 4. In Model 1, the sigma_u is estimated to be 0.545, 
which was larger than 0.5, meaning that the variance in the farm specific error term was greater than 
the variance in the stochastic error term. This result revealed that the one-sided random inefficiency 
component dominates the measurement error and other random disturbances, in other words, that 
meant the technical inefficiency model should not be ignored.  

Model 2 is the final model specification of the production function complete with the technical ineffi-
ciency model, which was exactly the hypothesis H1 for Test 2 - 7. The overall model quality seems 
satisfactory, according to both likelihood ratio tests and statistics.  

The Model 3 was designed to see how the ecological approaches affected the performance of the 
model, where all the ecological approaches were excluded in the Model 3. Almost all first order and 
second order coefficients of the inputs had the expected sign, except the first order parameter esti-
mated for input of fixed cost, and estimated results meet the regularity conditions (Morey, 1986).  

The estimates from Model 1 to Model 3 were consistent, so we focused on explaining the results in 
Model 2. The first order and second order estimates of input cropland area and fix cost were not sta-
tistically significantly. The labour and intermediate input cost were estimated positively significantly at 
the 1% level. When considering the magnitude of partial elasticity at the sample mean, inputs of labour 
and intermediate cost were important for crop production. A partial production elasticity of 0.131 was 
observed for labour, meaning that a 1% increase of labour will increase crop production by 13.1%. The 
biggest partial production elasticity came from intermediate input and was 0.810 significance at the 
1% statistical level that indicated intermediate inputs were the most important for the crop production 
in Sweden. 

3.6.4.1.3 Estimates for the technical inefficiency model and the effects of ecological ap-
proaches 

The determinants for the variation of a farm technical inefficiency were estimated in the technical 
inefficiency model (lower part of Table 5). Because technical inefficiency was the dependent variable 
in the technical inefficiency model, a negative parameter coefficient for the variables indicated a neg-
ative effect on technical inefficiency, but a positive effect on TE.  

CDI in lagged two years was estimated to be positively correlated with TE. This is consistent with the 
literature, where higher crop diversity contributes to increasing the productivity (Cardinale et al. 2012). 
Crop diversity stabilised its crucial role in agricultural production, with higher crop diversity improving 
the crop production; in particular the productive value of biodiversity that crop diversity increases crop 
yields has been emphasised (Bareille and Letort 2018). However, the estimate of organic farming indi-
cated that the organic farming approach is negatively related with TE. Although the estimates of or-
ganic farming and crop rotation were not statistically significant in Model 2, the test of excluding or-
ganic farming and crop rotation approach indicated the crop rotation approach was important for the 
whole model specification.  

The total amount of CAP subsidy was found to be positively related with the TE. The policy shock in-
troduced in 2014 was found to be negatively related with the TE, emphasising that complying with the 
“greening” requirements required additional farm resources to be used. 
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Table 5: Estimates of the stochastic frontier model 

Variables parameters 
Model 1 Model 2 Model 3 

Coef.  Std. Err. Coef.  Std. 
Err. Coef.  Std. 

Err. 
Dependent variable: ln(y) of Translog production function 
Constant α0 0.392*** 0.019 0.335*** 0.019 0.340*** 0.019 
 ln(x1) 𝛽𝛽1 -0.008 0.018 -0.005 0.016 -0.002 0.016 
 ln(x2) 𝛽𝛽2 0.122*** 0.031 0.131*** 0.026 0.127*** 0.027 
 ln(x3) 𝛽𝛽3 -0.024 0.040 -0.034 0.036 -0.035 0.036 
 ln(x4) 𝛽𝛽4 0.845*** 0.048 0.810*** 0.042 0.815*** 0.042 
 0.5ln(x1)2 𝛽𝛽11 -0.002 0.005 -0.001 0.004 -0.002 0.004 
 0.5ln(x2)2 𝛽𝛽22 -0.072 0.065 -0.038 0.064 -0.033 0.065 
 0.5ln(x3)2 𝛽𝛽33 0.025 0.024 0.018 0.026 0.016 0.026 
 0.5ln(x4)2 𝛽𝛽44 0.246*** 0.075 0.215*** 0.073 0.206*** 0.072 
 ln(x1) ln(x2) 𝛽𝛽12 0.047* 0.025 0.044* 0.025 0.042* 0.025 
 ln(x1) ln(x3) 𝛽𝛽13 0.005 0.017 0.011 0.017 0.013 0.017 
 ln(x1) ln(x4) 𝛽𝛽14 -0.031 0.027 -0.037 0.026 -0.040 0.026 
 ln(x2) ln(x3) 𝛽𝛽23 0.039 0.026 0.029 0.030 0.025 0.030 
 ln(x2) ln(x4) 𝛽𝛽24 -0.049 0.048 -0.043 0.047 -0.042 0.047 
 ln(x3) ln(x4) 𝛽𝛽34 -0.112*** 0.037 -0.094** 0.038 -0.088** 0.038 
Technical inefficiency model, dependent variable: technical inefficiency relevant 
Constant 𝜔𝜔0 -1.179*** 0.071 -1.716*** 0.113 -1.692*** 0.106 
ln(z1) 𝜔𝜔1   0.001 0.007 0.002 0.007 
ln(z2) 𝜔𝜔2   -0.574*** 0.080 -0.533*** 0.078 
ln(CDI_lag2) 𝜔𝜔3   -0.100** 0.042   
Organic farming 𝜔𝜔4   0.118 0.190   
Crop rotation 𝜔𝜔5   -0.172 0.117   
Year of policy shock 𝜔𝜔6   0.279** 0.128 0.307** 0.126 
Vsigma        
Constant   -3.594*** 0.141 -3.679*** 0.131 -3.693*** 0.132 
sigma_u  0.554*** 0.020     
sigma_v  0.166*** 0.012 0.159*** 0.010 0.158*** 0.010 
lambda  3.345*** 0.027     
Log likelihood  -356.0229 -317.8008 -322.3624 
Number of observation  943 943 943 
Wald chi2(14)  9129.85 7909.57 7867.27 
Prob > chi2  0.0000  0.0000 0.0000 
*Significant at 10% level (P < 0.10), **Significant at 5% level (P < 0.05), ***Significant at 1% level (P < 0.01) 

 

3.6.4.1.4 Summary of technical efficiencies 
After estimation of the stochastic production function and technical inefficiency model, we calculate 
the TE for each farm based on Model 2. Table 6 shows the summary statistics of the TE scores. The 
average estimated TE for farms in Sweden was 0.692, indicating that on average, farms produced 
69.2% of the potential output given the present state of technology and the input level. Therefore, the 
possibility of increasing crop production by an average of 30.8% can be achieved in the short term by 
adopting the practices of the best performing farms. About 14.42% of farms had a TE score smaller 
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than 0.50, whereas 11.45% of farms had TE scores greater than 0.50 and less than or equal to 0.60, 
and 19.19% of farms had TE scores greater than 0.60 and less than or equal to 0.70. About 22.38% of 
farms had TE scores more than 0.70 and less than or equal to 0.80, 26.94% of the farms had TE scores 
more than 0.80 and less than or equal to 0.90, and only 5.62% of farms operated with a TE score greater 
than 0.90.  

Table 6: Summary statistics of technical efficiency (TE) 

Variable Obs Mean Std. Dev. Min Max 
Overall TE 943 0.692 0.172 0.011 0.962 
TE in southern Sweden 876 0.703 0.161 0.077 0.962 
TE in northern Sweden 67 0.556 0.238 0.011 0.898 
Distribution Farm observations Percentage  
TE<0.5 136 14.42  
0.5≤TE<0.6 108 11.45  
0.6≤TE<0.7 181 19.19  
0.7≤TE<0.8 211 22.38  
0.8≤TE<0.9 254 26.94  
TE>0.9 53 5.62  

 

The normal- kernel density distribution of TE in Sweden is presented in Figure 1.  

Figure 1: Histogram graphs of TE in southern (green line) and northern (red line) Sweden 

3.6.4.2 Analysis on standard indicators of economic performance of the arable farms in Swe-
den 

Descriptive statistics of the indicators of economic performance is given in Table 7. Swedish arable 
farms are dependent on subsidies. The average dependence on subsidies is 18% for conventional and 
22% for organic farms. Without considering the public support Swedish arable farms applying conven-
tional and organic approaches can on average cover 97% respective 85% of the costs excluding costs 
for owned production factors. The farm revenue can cover on average 9% vs. 11% of the costs of 
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owned production factors, for the conventional and the organic farms respectively. Conventional 
farms cover on average 74% of the assets, respective 65% for the organic farms. Conventional farms 
have on average larger value of average product of land and intermediary costs, whereas organic farms 
are better-off in terms of the average product of labour, and have slightly higher average value for the 
average product of capital.  

Table 7: Descriptive statistics of the economic performance indicators (n=989)  

Economic performance indicator Sample 
mean 

Ecological approach 
Conventional 
mean 

Organic mean 

Profitability indicators    
Private revenue-cost-ratio excluding   
owned production factors 

.96 .97    .85    

Public revenue-cost-ratio  
excluding owned production factors 

1.17 1.18   1.09  

Private revenue-cost-ratio  
including owned production factors 

.09 .09 .11 

Public revenue-cost-ratio  
including owned production factors 

.11 .11 .13 

Partial productivity indicators    
Average product of land  1470.52 1476.82     1403.45   
Average product of labour 159695.90 158337.80    174140.30    
Average product of capital .23 .22 .28    
Average product of intermediary ex-
penses 

1.39 1.40    1.30 

Additional indicators    
Market orientation .82 .82    .78    
Equity ratio .73 .74   .65   

Note: SEK is for the Swedish currency kronor; where 10.SEK = 0.9 euro.    

3.6.5 Conclusions 

In this CS report deliverable, we have presented the results of the technical and the economic perfor-
mance of arable farms in Sweden. Based on FADN data for the period 2010-2016, two methodological 
approaches for analysing the TE and the economic performance of arable farms in Sweden were used. 
The TE analysis incorporated variables on the degree of ecological approaches and factors driving the 
TE of the farms. The economic performance of farms was estimated by standard economic indicators 
of profitability, partial productivity and long-term financial stability and dependence on subsidies. 

The average estimated TE for farms in Sweden was 0.692 indicating a possibility for increase in the 
crop production value by an average of 30.8%, by adopting the practices of the best performing farms. 
Discrepancies in the TE level were identified in regard to the location; where farms in southern Sweden 
were found to be on average technically more efficient than the farms located in northern Sweden, 
i.e. 70.3% vs 55.6%. The largest partial production elasticity was estimated for the intermediate input 
(0.810 significance at the 1% statistical level) indicating that the intermediate input was the most im-
portant input for crop production. The analysis on the determinants of a farm TE showed a positive 
impact of both the CAP subsidy and a mixed effect of ecological approaches, the CDI in lagged two 
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years was estimated to be positively correlated with TE, but organic farming approaches and crop ro-
tation approach were estimated not significantly correlated with TE.  

For most of the indicators of economic performance conventional farms are better-off or have similar 
average score with the organic farms. Conventional farms cover a larger share of costs for farms pro-
duction factors excluding owned factors i.e. 97% vs 85% for the organic farms. When owned factors 
are included, the coverage is 9% vs. 11% for the conventional and the organic farms. The value of 
average product of land and intermediary costs are on average larger for the conventional farms, 
whereas, organic farms are better off in terms of the average product of labour and slightly on capital. 
Swedish arable farms are dependent on subsidies. Subsidies’ contribution to the total farm income is 
on average 18% for the conventional and 22% for organic farms. Conventional farms cover on average 
74% of the assets, respective 65% for the organic farms.  

The economic performance of farms located in North Sweden, and of organic farms is lower when 
subsidies are not considered, signalling for the need that the losses originating from regional produc-
tion potential, and from applying organic farming approaches need to be compensated. 
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3.7 Comparison of total factor productivity and its components between low input 
and conventional farming systems: the case of Hungarian cereal oilseed and pro-
tein (COP) crop producing farms (2011-2015) (MTA KRTK) 

Lajos Baráth, Zoltán Bakucs and Imre Fertő  

 

MTA KRTK - Magyar Tudományos Akadémia Közgazdaság- és Regionális Tudományi Kutatóközpont, 
Hungary 

 

3.7.1 Introduction and description of case study region 

The aim of this paper is to compare total factor productivity (TFP) and its components of Hungarian 
low input and conventional Cereals, Oilseed and Protein (COP) crop producing farms (according to the 
FADN types of farm classification (TF14), farms with group identifier: 15). 

Ecological approaches to farming practices are gaining interest across Europe. As this interest grows 
there is a pressing need to assess the potential contributions these practices may make and their at-
tractiveness to farmers as potential adopters. In this paper we compare differences in TFP and its com-
ponents of low input and conventional farming systems.  

Assignment to the farming systems is based on the protocol that was developed within the LIFT project 
(Rega et al., 2019). 

The description of the case study region can be found in Barath et al, 2021 (Differences in Efficiency 
and Productivity between conventional and organic farms: the case of Hungarian Cereal Oilseed and 
Protein (COP) crop producing farms (2010-2015). 

First, we estimate Stochastic Frontier Models to examine production technology and technical effi-
ciency (TE) of farms. In order to consider differences in production technology we apply a random 
parameter stochastic frontier model. Second, based on the estimated parameters we construct tran-
sitive Törnquist-Theil total factor productivity (TFP) index, which enable multilateral comparison of 
farms or group of farms. Then we decompose this index into differences in technological change, tech-
nical efficiency and scale efficiency. We use statistical tests to examine whether the differences be-
tween low input and conventional farms are statistically significant.  

The structure of the paper is as follows. In the next section, we describe the database and variables 
used for the analysis. It will be followed by the description of the applied methodology then we report 
the results and discussion of the results, finally we conclude.  

3.7.2 Data 

For the empirical analysis, we used data from the EU Farm Accountancy Data Network (EU FADN). We 
used a balanced panel over the 2011-2015 period. After cleaning the data the total number of farms 
was 2655, we had 2441 conventional farms and 214 low input farms.  

Descriptive statistics of the applied variables can be found in Table 1. For the purpose of production 
frontier estimation, one output (Y – total agricultural production in value) and four inputs (labour in 
Annual Work Units (X1), utilised agricultural area (UAA) in hectares (X1), total fixed assets in value (X2) 
and total intermediate consumption in value (X3) were used. Additionally, a time variable (t) and time-
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squared variable (tt) were added to the production frontier to allow for non-monotonic technical 
change. 

Over the estimation all of the variables expressed in nominal prices were deflated to 2010 prices with 
the use of the appropriate deflators reported by the Hungarian Central Statistical Office (HCSO); pre-
cisely the output was deflated by the agricultural output price index, the intermediate consumption 
by the price index of purchased goods and services and the corresponding values of total fixed assets 
by the price index of agricultural investments. 

Table 1: Descriptive statistics 

Conventional 
 Mean Standard Deviation Minimum Maximum Observation 
Output(Y) 233023.60 375562.00 3.58 3851833.00 2441.00 
LABOUR (X1) 3.60 6.63 0.01 76.65 2441.00 
LAND (X2) 239.32 343.74 6.51 2823.81 2441.00 
Capital (X3) 327606.50 354849.80 242.47 2675589.00 2441.00 
Materials (X4) 19445.95 29677.16 164.69 452780.10 2441.00 

Low Input 
Output(Y) 85688.20 142717.10 3916.08 1708134.00 214.00 
LABOUR (X1) 1.40 2.12 0.02 12.72 214.00 
LAND (X2) 141.75 230.96 7.20 2366.00 214.00 
Capital (X3) 134407.40 176698.90 939.58 1190739.00 214.00 
Materials (X4) 6914.74 10455.89 48.59 107980.40 214.00 

All farms 
Output(Y) 221148.00 364578.90 3.58 3851833.00 2655.00 
LABOUR (X1) 3.42 6.42 0.01 76.65 2655.00 
LAND (X2) 231.46 337.07 6.51 2823.81 2655.00 
Capital (X3) 312034.10 347905.30 242.47 2675589.00 2655.00 
Materials (X4) 18435.90 28812.03 48.59 452780.10 2655.00 

Source: Own calculation based on FADN data 

 

3.7.3 Method 

First, we estimate production structure and technical efficiency. We model production technology with 
an SFA model. Traditional frontier models assume that all firms face common technology. However, in 
practice firms use different technologies for a variety of reasons (Tsionas, 2002).  

As the main goal of this paper is to compare low input and conventional farms and these group of 
farms certainly use different technologies we apply a Random Parameter Model (RPM) which allow us 
to consider technological differences among farms. 

The RPM, following Greene (2005), may be written as follows: 
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 𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛼𝛼𝑖𝑖 + 𝜷𝜷𝑖𝑖′𝒙𝒙𝑖𝑖𝑖𝑖 + βtit + 𝑣𝑣𝑖𝑖𝑖𝑖 − 𝑢𝑢𝑖𝑖𝑖𝑖, 

where 

(1) 

𝑣𝑣𝑖𝑖𝑖𝑖~𝑁𝑁[0,𝜎𝜎𝑣𝑣2],  𝑣𝑣𝑖𝑖𝑖𝑖 ⊥ 𝑢𝑢𝑖𝑖𝑖𝑖 

𝑢𝑢𝑖𝑖𝑖𝑖 = |𝑈𝑈𝑖𝑖𝑖𝑖|,𝑈𝑈𝑖𝑖𝑖𝑖~𝑁𝑁[0,𝜎𝜎𝑢𝑢], 

𝛼𝛼𝑖𝑖 = 𝛼𝛼� + 𝛼𝛼𝑤𝑤𝑤𝑤𝑖𝑖, 

𝜷𝜷𝒙𝒙𝑖𝑖 = 𝜷𝜷�𝒙𝒙 + 𝜷𝜷𝑥𝑥𝑤𝑤𝑤𝑤𝑖𝑖, 

β𝑖𝑖𝑖𝑖 = �̅�𝛽𝑖𝑖 + 𝛽𝛽𝑖𝑖𝑤𝑤𝑤𝑤𝑖𝑖, where 

, i=1,…,N indicating the number of farms;  t=1,…,T indicating the time period, w is an unobservable 
latent random term;  𝛼𝛼𝑖𝑖, 𝜷𝜷𝒙𝒙𝑷𝑷, β𝑖𝑖𝑖𝑖, 𝛼𝛼𝑤𝑤, 𝜷𝜷𝑥𝑥𝑤𝑤, 𝛽𝛽𝑖𝑖𝑤𝑤 denote the parameters to be estimated, 𝑢𝑢𝑖𝑖𝑖𝑖  represents 
technical inefficiency, and 𝑣𝑣𝑖𝑖𝑖𝑖 stands for statistical noise (Greene, 2005). yit represents the output var-
iable and 𝒙𝒙𝑖𝑖𝑖𝑖 are inputs. 

Third, based on the estimated parameters of the RPM, we constructed multilateral-consistent 
Törnquist-Theil TFP index (Caves et al., 1982). This productivity index between farm i in period t and 
the sample average can be formulated as follows: 

ln TFPitTTI =        �lnyit − 𝑙𝑙𝐹𝐹𝑦𝑦������ − 1
2
∑ (Skit + Sk���)�lnxkit − lnxk�������k     (2) 

, where k = 1, … , K inputs; and S stands for share of inputs. A bar above a variable refers to the arith-
metic mean of the variable over all sample observations. 

Fourth, we decomposed the TFP index. The estimated TFP index can be decomposed into an effect 
which results from adjustments in the scale of factor use (SE), a technological change effect (TCH), and 
changes in TE (TE), i.e.:  

 TFP = TCH × TE × SE.             (3) 

Finally, we used statistical tests to compare the differences between low input and conventional farms 
in TFP and its components. 

3.7.4 Results 

3.7.4.1 Parameter estimates of the Random Parameter Model 

Selected parameter estimates of the estimated Translog production SF Model are presented in Table 
2.  

The results show that all of the first order coefficients are statistically significant and have the expected 
sign (positive), i.e. monotonicity criteria that is suggested by production theory is satisfied. We con-
ducted several tests before choosing this model.  

First, we tested Translog against Cobb-Douglas functional form using Likelihood ratio test. The test 
clearly rejected Cobb Douglas functional form.  

Next, we compared, traditional Normal/Half-Normal SFA model (where the effect of heterogeneity is 
not accounted for), True random effect Model (where heterogeneity affect only the intercept) with 
RPM (where heterogeneity affect not only the intercept, but all of the input variables, i.e. it has an 
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effect on marginal productivity of all of the inputs) based on Akaike Information Criteria (AIC). The test 
clearly showed that RPM fit better to this data.  

Table 2: First order coefficient of the estimated RPM 

 
Coefficients Standard Er-

ror z Prob 
|z|>Z* 95% confidence interval 

Constant 0.21076*** 0.011 19.870 0.000 0.190 0.232 
Time -0.01041** 0.004 -2.520 0.012 -0.019 -0.002 
Labour 0.11454*** 0.009 13.360 0.000 0.098 0.131 
Land 0.63155*** 0.017 37.990 0.000 0.599 0.664 
Capital 0.13233*** 0.006 20.460 0.000 0.120 0.145 
Materials 0.18637*** 0.014 12.920 0.000 0.158 0.215 

 

Moreover, results show to some extent a higher estimate for land and lower for material compared to 
estimates for different time periods. Therefore, we checked the robustness of these results, other 
models showed similar results confirming that over the analysed period the elasticity of land is higher 
and the elasticity of material is lower over this time period on the case of balanced panel.  

According to the results land was the most and labour was least influential input. Interestingly, the 
estimate of technological change is negative. One possible explanation for this negative sign is that 
technological change measured in this way does not measure purely the changes in technology, it is 
combined measure of technical and environmental change that is the negative sign is might be a con-
sequence of worsening weather condition. However, further research is needed to examine the effect 
of weather on the production, but this is out of the scope of this paper.  

3.7.4.2 Comparison of TFP and its components  

Table 3 shows the results of TFP decomposition. It can be seen that the TFP for conventional farms are 
much higher compared to Low input farms. The reason of this difference is the higher technical and 
scale efficiency of conventional farms. All these results are highly statistically significant according to 
Mann-Whitney test, the associated p-value id 0.000. Technological change was similar for both farms.  

Table 3: Decomposition of the TFP index 

 Mean Std. Dev. Min Max 
TFP 
Conventional 1.03 0.20 0.35 2.45 
Low Input 0.91 0.16 0.45 1.37 
Mann-Whitney Test: Prob > |z| 0.000  -   -   -  

TCH 
Conventional 1.00 0.06 0.92 1.17 
Low Input 1.00 0.06 0.93 1.17 
Mann-Whitney Test: Prob > |z| 0.000  -   -   -  

SE 
Conventional 1.01 0.13 0.56 1.81 
Low Input 0.94 0.07 0.63 1.15 
Significance   -   -   -  
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TE 
Conventional 1.01 0.12 0.50 1.23 
Low Input 0.96 0.14 0.54 1.20 
Mann-Whitney Test  
Prob > |z| 0.000  -   -   -  

Source: Own calculation based on FADN data 

3.7.5 Conclusions  

The aim of this paper was to compare total factor productivity (TFP) and its components of Hungarian 
low input and conventional Cereals, Oilseed and Protein (COP) crop producing farms. We identify low 
input farms based on the protocol that was developed within the LIFT project.  

First, we estimate production technology and technical efficiency using a random parameter stochastic 
production frontier model, which allow us to consider technological differences among farms. Then 
we calculate and decompose Törnquist-Theil TFP index into its components.  

We compare the differences between Low input and conventional farms using statistical tests. Results 
show that TFP scores of low input farms are smaller compared to conventional farms, and the differ-
ence is statistically significant.  

Technological change is similar for both group of farms, however both technical and scale efficiency 
score is significantly lower for low input farms. 

Results have implications for policy. As the difference between low input and conventional farms was 
significant in TE and scale efficiency, it suggests that the performance of these farms can be increased 
with appropriate policy measures. TE might be increased with special agricultural training for low input 
farm managers. Scale efficiency is sensitive to policies regarding taxes. Reconsideration of agricultural 
tax policies might improve scale efficiency of low input farms. 
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3.8  Differences in efficiency and productivity between conventional and organic 
farms: the case of Hungarian cereal oilseed and protein (COP) crop producing 
farms (2010-2015) (MTA KRTK) 

Lajos Baráth, Zoltán Bakucs and Imre Fertő 

  

MTA KRTK - Magyar Tudományos Akadémia Közgazdaság- és Regionális Tudományi Kutatóközpon, 
Hungary 

 

3.8.1 Introduction 

The aim of this paper is to compare efficiency and productivity of Hungarian organic and conventional 
field crop producing farms. More precisely, according to the FADN types of farm classification (TF14), 
we analyse farms, which are classified as specialists Cereals, Oilseed and Protein (COP) crop producing 
farms (Grouping Nr. 15 in the TF14 classification system). 

3.8.2 Description of the case study area 

Field crop production has traditionally been a key sector in Hungarian agriculture. About 40% of all 
Hungarian farms specialise in field crop production, and use 60% of the arable land and account for 
more than a third of the output of agricultural production (Pesti and Keszthelyi, 2010). This is the sub-
sector of Hungarian agriculture that integrates well with international commerce, in that the product 
channels are well organised and the products comprise the largest proportion of agricultural exports 
(Pesti and Keszthelyi, 2010).  

For purposes of empirical examination, we use Hungarian national FADN Data over the 2010-2015 
period.  

First, we estimate Stochastic Frontier Models to examine production technology and technical effi-
ciency (TE) of farms. In order to consider differences in production technology we apply a random 
parameter stochastic frontier model. Second, based on the estimated parameters we construct tran-
sitive Törnquist-Theil total factor productivity (TFP) index, which enable multilateral comparison of 
group of farms. Third, to eliminate potential selections bias between the analysed groups of farms we 
compare the TE and TFP scores of organic and conventional farms applying propensity score matching.  

The structure of the paper is as follows. In the next section, we describe the database and variables 
used for the analysis. It will be followed by the description of the applied methodology then we report 
the results and discussion of the results, finally we conclude.  

3.8.3 Data 

For the empirical analysis, we used data from the Hungarian Farm Accountancy Data Network (FADN). 
The Hungarian FADN system contains data from about 1900 annually reporting agricultural farms. For 
the purpose of estimation, one output (Y – total agricultural production in value) and four inputs (la-
bour in Annual Work Units (X1), utilised agricultural area (UAA) in hectares (X1), total fixed assets in 
value (X2) and total crop specific costs consumption in value (X3) were used. Additionally, a time varia-
ble (t) and time-squared variable (tt) were added to the production frontier to allow for non-monotonic 
technical change. 
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All of the variables expressed in nominal prices were deflated to 2010 prices with the use of the ap-
propriate deflators reported by the Hungarian Central Statistical Office (HCSO); precisely the output 
(Y) was deflated by the agricultural output price index, the intermediate consumption (X4) by the price 
index of purchased goods and services and the corresponding values of total fixed assets (X3) by the 
price index of agricultural investments. 

We used a balanced panel, in order to ensure the comparison between the same farms over the years 
analysed. The total Number of COP producing farms was 3000 over the analysed period. The number 
of organic farms was low; we had only 6 organic farms. The number of conventional farms was 2968; 
6 firms was converting to organic production methods and 20 farms applied both organic and conven-
tional production method. Descriptive statistics of the variables are included in Table 1.  

The variance is high for all of the variables, suggesting that heterogeneity plays an important role in 
the case of Hungarian COP producing farms and therefore it is important to account for it in the pro-
duction model. 

Table 1: Descriptive statistics 

Conventional 
 Mean Standard Deviation Minimum Maximum Observation 

Output(Y) 200619.6 315238.9 687.4 3664902.0 2968 
LABOUR (X1) 3.2 5.7 0.0 64.9 2968 
LAND (X2) 227.3 323.4 6.5 2398.0 2968 
Capital (X3) 302797.3 339429.7 242.5 3439738.7 2968 
Materials (X4) 65746.8 104290.2 425.9 1016633.8 2968 

Organic 
Output(Y) 183395.8 85088.9 65536.0 308916.0 6 
LABOUR (X1) 2.0 1.0 0.8 3.4 6 
LAND (X2) 147.7 18.0 111.0 155.0 6 
DSE441 (X3) 120640.0 21880.1 93042.9 150403.1 6 
DSE275 (X4) 5706.6 2291.6 4101.6 10282.7 6 

All farms 
Output(Y) 207223.6 339948.9 687.4083 3664902 3000 
LABOUR (X1) 3.400625 6.491146 0.01 76.6558 3000 
LAND (X2) 233.8631 345.1116 6.51 2859.61 3000 
DSE441 (X3) 306723.4 350264.3 242.4732 3439738.7 3000 
DSE275 (X4) 68627.2 120697.9 425.9439 1578782.5 3000 

Source: Own calculation based on FADN data 

3.8.4 Method 

We model production technology with an SFA model. Traditional frontier models assume that all firms 
face common technology. However, in practice firms use different technologies for a variety of reasons 
(Tsionas, 2002).  
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As the main goal of this paper is to compare organic and conventional farms and these group of farms 
certainly use different technologies we apply a Random Parameter Model (RPM) which allow us to 
consider technological differences among farms. 

The RPM, following Greene (2005), may be written as follows: 

 𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛼𝛼𝑖𝑖 + 𝜷𝜷𝑖𝑖′𝒙𝒙𝑖𝑖𝑖𝑖 + βtit + 𝑣𝑣𝑖𝑖𝑖𝑖 − 𝑢𝑢𝑖𝑖𝑖𝑖, 
where 

(1) 

𝑣𝑣𝑖𝑖𝑖𝑖~𝑁𝑁[0,𝜎𝜎𝑣𝑣2],  𝑣𝑣𝑖𝑖𝑖𝑖 ⊥ 𝑢𝑢𝑖𝑖𝑖𝑖 

𝑢𝑢𝑖𝑖𝑖𝑖 = |𝑈𝑈𝑖𝑖𝑖𝑖|,𝑈𝑈𝑖𝑖𝑖𝑖~𝑁𝑁[0,𝜎𝜎𝑢𝑢], 

𝛼𝛼𝑖𝑖 = 𝛼𝛼� + 𝛼𝛼𝑤𝑤𝑤𝑤𝑖𝑖, 

𝜷𝜷𝒙𝒙𝑖𝑖 = 𝜷𝜷�𝒙𝒙 + 𝜷𝜷𝑥𝑥𝑤𝑤𝑤𝑤𝑖𝑖, 

β𝑖𝑖𝑖𝑖 = �̅�𝛽𝑖𝑖 + 𝛽𝛽𝑖𝑖𝑤𝑤𝑤𝑤𝑖𝑖, where 

 

, i=1,…,N indicating the number of farms;  t=1,…,T indicating the time period, w is an unobservable 
latent random term;  𝛼𝛼𝑖𝑖, 𝜷𝜷𝒙𝒙𝑷𝑷, β𝑖𝑖𝑖𝑖, 𝛼𝛼𝑤𝑤, 𝜷𝜷𝑥𝑥𝑤𝑤, 𝛽𝛽𝑖𝑖𝑤𝑤 denote the parameters to be estimated, 𝑢𝑢𝑖𝑖𝑖𝑖  represents 
technical inefficiency, and 𝑣𝑣𝑖𝑖𝑖𝑖 stands for statistical noise (Greene, 2005). yit represents the output var-
iable and 𝒙𝒙𝑖𝑖𝑖𝑖 are inputs. 

Furthermore, based on the estimated parameters of the RPM, we constructed multilateral-consistent 
Törnquist-Theil TFP index (Caves et al., 1982). This productivity index between farm i in period t and 
the sample average can be formulated as follows: 

ln TFPitTTI =        �lnyit − 𝑙𝑙𝐹𝐹𝑦𝑦������ − 1
2
∑ (Skit + Sk���)�lnxkit − lnxk�������k      (2) 

, where k = 1, … , K inputs; and S stands for share of inputs. A bar above a variable refers to the arith-
metic mean of the variable over all sample observations. 

Moreover, a simple comparison of the performance indicators between organic and conventional 
farms might give biased results, because the assignment of farms into the groups is not random, in 
other words selection bias might affect the results of comparison. 

Therefore, the basic objective of an unbiased comparison is to get rid of selection bias. The two most 
common methods of accounting for selection bias in social sciences are matching and Difference in 
Difference (D-i-D) methods. In this paper, we use propensity score matching (PSM) in order to account 
for selection bias (Rosenbaum-Rubin, 1983a; 1983b). 

3.8.5 Results 

3.8.5.1 Parameter estimates of the Random Parameter Model 

Selected parameter estimates of the estimated Translog production SF Model are presented in Table 
2. The results show that all of the first order coefficients are statistically significant and have the ex-
pected sign (positive), i.e. monotonicity criteria that is suggested by production theory is satisfied. We 
conducted several tests before choosing this model. First, we tested Translog against Cobb-Douglas 
functional form using Likelihood ratio test. The test clearly rejected Cobb Douglas functional form.  

Next, we compared traditional Normal/Half-Normal SFA model (where the effect of heterogeneity is 
not accounted for), True random effect Model (where heterogeneity affect only the intercept) with 
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RPM (where heterogeneity affect not only the intercept, but all of the input variables, i.e. it has an 
effect on marginal productivity of all of the inputs) based on Akaike Information Criteria (AIC). The test 
clearly showed that RPM fits better to this data. The statistically significant values of all of the scale 
parameters also indicate that RPM fits well to these data and it is important to consider the effect of 
heterogeneity not only on the intercept but on input variables, too. Moreover, results show that land 
input was the most influential in the production and labour was the least important. Interestingly, the 
estimate of technological change is negative. One possible explanation for this negative sign is that 
technological change measured in this way does not measure purely the changes in technology and 
instead is a combined measure of technical and environmental change; that is, the negative sign might 
be a consequence of worsening weather condition. However, further research is needed to examine 
the effect of weather on the production, but this is out of the scope of this paper. Another interesting 
feature is the nature of technological change. According to these estimates the nature of technological 
change was land using and intermediate consumption saving. 

Table 2: Parameter estimates (selected) 

 
Coefficients Standard 

Error z Prob 
|z|>Z* 

95% confidence in-
terval 

Random parameters 
Constant 0.257*** 0.009 29.020 0.000 0.239 0.274 
Time -0.012*** 0.002 -5.340 0.000 -0.017 -0.008 
Labour 0.073*** 0.007 9.830 0.000 0.057 0.086 
Land 0.471*** 0.013 35.980 0.000 0.445 0.497 
Capital 0.109*** 0.005 20.040 0.000 0.099 0.120 
Materials 0.371*** 0.012 32.110 0.000 0.349 0.394 
Non-random parameters 
Time*Time 0.007** 0.004 2.010 0.044 0.000 0.015 
Time*Labour -0.001 0.003 -0.270 0.784 -0.007 0.006 
Time*Land 0.040*** 0.006 6.980 0.000 0.029 0.052 
Time*capital 0.001 0.002 0.240 0.808 -0.004 0.005 
Time*Materials -.032*** 0.005 -6.200 0.000 -0.042 -0.022 
Asymmetry and variance parameter 
Sigma 0.395*** 0.004 94.890 0.000 0.387 0.404 
Lambda 3.428*** 0.182 18.800 0.000 3.071 3.786 
Scale parameters for random variables 
Constant -0.224*** 0.004 -53.340 0.000 -0.233 -0.216 
Time 0.014*** 0.002 6.770 0.000 0.010 0.019 
Labour -0.030*** 0.006 -5.460 0.000 -0.041 -0.019 
Land -0.058*** 0.010 -5.770 0.000 -0.078 -0.039 
Capital 0.011*** 0.004 2.610 0.009 0.003 0.020 
Materials 0.099*** 0.008 12.100 0.000 0.083 0.115 

Source: Own calculation based on FADN data 

3.8.5.2 Drivers of technical efficiency 

In order to examine drivers of technical efficiency we regressed TE on different exogenous drivers: 
Economic Size Unit (ESU), education (of farm manager), other income, soil quality, number of owners, 
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irrigate, age (of farm manager) and organic. We used the variable irrigate as a dummy variable, it shows 
whether a farm has some irrigated land or not. Organic is also a dummy variable: 0 conventional farms; 
1 organic farms. Results are shown in Table 3.  

Table 3: Drivers of technical efficiency 

 
Coefficients Standard Er-

ror z Prob 
|z|>Z* 95% confidence interval 

Economic Size Unit 0.647D-04*** .201D-04 3.220 0.001 .252D-04 .104D-03 
Education 0.002*** .435D-04 36.750 0.000 0.002 0.002 
Other Income 0.221*** 0.008 28.970 0.000 0.206 0.235 
Soil Quality 0.005*** 0.000 15.210 0.000 0.005 0.006 
Nr. Of owners -0.001*** 0.000 -5.330 0.000 -0.001 -0.001 
irrigate 0.074*** 0.015 5.060 0.000 0.045 0.103 
Age 0.001*** .365D-04 11.120 0.000 0.000 0.000 
Organic 0.521D-04 .418D-04 1.250 0.213 -0.298D-04 .134D-03 
Source: Own calculation based on FADN data. Note: nnnnn.D-xx or D+xx => multiply by 10 to -xx or +xx.. ***, **, * ==> 
Significance at 1%, 5%, 10% level. 

Table 3 shows: the higher value of ESU, education, other income, soil quality, irrigation and age in-
crease technical efficiency whereas the higher number of owners decrease. We included also the var-
iable organic to test whether organic production affect technical efficiency or not. The result shows 
that it does not have any significant effect on TE.  

3.8.5.3 Comparison of Indicators 

Table 4. contains the comparison of 4 profitability indicators, 4 partial productivity measures and two 
additional indicators: market orientation and equity ratio. The calculation of these indicators can be 
found in the Appendix.  

Table 4 shows that the profitability of organic farms is higher and the difference is statistically signifi-
cant for all of the calculated profitability indicators. Land and Material productivity is also significantly 
higher for organic farms, whereas capital productivity is significantly higher for conventional farms. 
There were no significant differences for the other indicators. 

 

Table 4: Comparison of indicators between conventional and organic farms 

 Conventional Organic p-value 
profitability 1 1.23 2.73 0.000 
profitability 2 1.62 3.50 0.000 
profitability 3 0.88 1.92 0.001 
profitability 4 1.16 2.46 0.000 
labour productivity 83248.63 102477.90 0.154 
land productivity 880.12 1211.08 0.073 
capital productivity 3.14 1.64 0.011 
material productivity 1.63 4.24 0.000 
market orientation 0.24 0.24 0.946 
equity ratio 0.85 0.92 0.621 

Source: Own calculation based on FADN data 
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3.8.5.4 Comparison of TE and TFP 

The mean comparison of estimated TE and TFP scores can be found in Table 5.  

Table 5: Mean comparison of TE and TFP 

 Mean Standard 
Deviation Minimum Maximum Observations Prob > |z| 

TE 
Conventional farms 1.01 0.13 0.48 1.34 2968 - 
Organic farms 0.95 0.15 0.78 1.18 6 - 
Mann-Whitney test   - 0.322 
 TFP 
Conventional farms 0.76 0.13 0.12 0.96 2968 - 
Organic farms 0.72 0.18 0.50 0.96 6 - 
Mann-Whitney test  - 0.526 

Source: Own calculation based on FADN data 

Table 5 shows that both the TE and TFP of conventional farms are to some extent higher compared to 
organic farms. We tested whether these differences are statistically significant or not using Mann-
Whitney test. The test shows that the differences are not significant. However, this comparison may 
be biased, therefore in the next section we apply matching method in order to correct for sample 
selection bias. 

3.8.5.5 Comparison of TE and TFP using matching method 

The decision of how many variables to include into the matching procedure is widely discussed in the 
literature. In order to choose the applied variables, we checked differences between organic and con-
ventional farms in terms of standardised bias. We found that there is a difference in economic size, 
educational level and soil quality between these groups of farms. Therefore, in our matching proce-
dure we control for these variables. Educational level was measured in a scale from 1 to 5: 1 lowest 
educational level, 5 the highest educational level. Soil quality is based on a Hungarian soil qualification 
system; the higher value means better quality.  

We tested different matching algorithms and we choose the one where the mean bias was the smallest 
after matching. Figure 1 shows the mean bias matching for different matching algorithms and for dif-
ferent number of nearest neighbours. It shows that the mean bias is the lowest with 6 nearest-neigh-
bour, therefore we choose this type of matching for the comparison of farms’ performance.  

 

Figure 1: Mean bias after matching. Source: Own calculation based on FADN data 
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Table 6 shows that the applied matching algorithm, balanced well the sample; all the differences in the 
covariates that were statistically significant before matching disappeared after matching.  

Table 6: Differences in the matched and unmatched sample 

Variable Unmatched(U)/ 
Matched(M) 

Mean  
% reduce bias 

Treated Control %bias 

ESU 
U 73.5 141.7 -46.9  
M 73.5 72.6 0.6 98.7 

Soil quality 
U 16.9 18.0 -12.7  
M 16.9 17.3 -4.9 61.1 

Education 
U 1.0 2.1 -110.3  
M 1.0 1.0 0.0 100.0 

Source: Own calculation based on FADN data 

The results of treatment effect analysis are reported in Table 7.  

Table 7: Average Treatment effect on the Treated 
 Coef. Robust Std. Err. z P>|z| [95% Conf. Interval] 
TE -0.045 0.078 -0.580 0.564 -0.199 0.108 
TFP -0.061 0.075 -0.810 0.416 -0.209 0.086 

Source: Own calculation based on FADN data 

Results show that the differences between organic and conventional farms in TE and TFP is not statis-
tically significant. 

3.8.6 Conclusions and Limitations 

The aim of this paper was to compare the TE and TFP of organic and conventional COP crop producing 
farms. We estimated TE using a random parameter stochastic production frontier. The model suited 
well to this dataset, most variables were significant and criteria suggested by economic theories were 
fulfilled. Based on the estimated parameters of the model we constructed a Törnquist-Theil TFP index. 
First, we compared the performance of the groups with standard statistical test. Results showed that 
both the TE and TFP of organic farms are smaller, but the difference was not statistically significant. 
Second, we compared TE and TFP based on propensity score matching in order to eliminate potential 
selection bias. After controlling for selection bias the difference remained insignificant. In addition, we 
compared several indicators concerning farms technical and economic performance. Results showed 
that profitability, land and material productivity are significantly higher for organic farms. However, 
because of the low number of organic farms in our sample, all results should be interpreted with cau-
tion. 

One limitation of such kind of comparison is the lack of appropriate deflators. In order to estimate a 
production frontier using FADN data in most of the cases, one has to use implicit quantity indices for 
the output variable(s) and some of the input variable(s) (e.g. intermediate consumption). Organic 
farms usually can sell their products for higher prices and might buy some of their inputs for higher 
prices compared to conventional farms. In case the same price indices are used to deflate the mone-
tary variable(s) used in the production frontiers both for organic and conventional farms., the implicit 
quantities will be biased in the case of organic farms. With more appropriate price indices, more accu-
rate performance analysis would be possible.  
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Our results have also implications for policy. First, they show that the construction of different price 
indices for organic and conventional farms is an important first step to make more reliable evaluation 
concerning the differences in production efficiency between the different production systems. Second, 
the low number of organic farms suggest, if increasing the number of organic farms or the share of 
organic food production is a policy goal, more targeted measures are needed to attract farmers to 
convert their farms to organic. 
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3.8.8 Appendix 

Definitions of indicators of technical-economic farm performance 

# Group Name Description Definition in FADN 
1 Profitability 

indicators 
Private revenue-
cost-ratio not 
considering re-
muneration of 
owned produc-
tion factors 

Revenue / (intermediate 
expenses+ depreciation + 
paid interest + paid labour 
+ paid rent):  
Expresses ability of a farm 
to cover costs, not having 
to cover costs for owned 
production factors, with 
its private revenues 

SE131 / (SE275 + SE360 + 
SE370 + SE375 + SE380) 

2 Profitability 
indicators 

Public revenue-
cost-ratio not 
considering re-
muneration of 
owned produc-
tion factors 

(Revenue + subsidies) / 
(intermediate expenses + 
depreciation + paid inter-
est + paid labour + paid 
rent) 
Expresses ability of a farm 
to cover costs, not having 
to cover costs for owned 
production factors, with 
its private revenues and 
public subsidies 

(SE131 + SE605) / (SE275 + 
SE360 + SE370 + SE375 + 
SE380) 

3 Profitability 
indicators 

Private revenue-
cost-ratio con-
sidering remu-
neration of 
owned produc-
tion factors 

Revenue / (intermediate 
expenses + depreciation + 
imputed interest + im-
puted labour + imputed 
rent  
Expresses ability of a farm 
to cover all costs, includ-
ing those for owned pro-
duction factors with its 
private revenue 

SE131 / (SE275 + SE360 + (SE436 
* imputed interest rate) + (SE010 
* hours of fulltime AWU * im-
puted wage per hour) + (SE025 * 
imputed rent per ha)).  

4 Profitability 
indicators 

Public revenue-
cost-ratio con-
sidering remu-
neration of 
owned produc-
tion factors 

Revenue + Subsidies / (in-
termediate expenses + 
depreciation + imputed 
interest + imputed labour 
+ imputed rent  
 
Expresses ability of a farm 
to cover all costs, includ-
ing those for owned pro-
duction factors with its 
private revenue and pub-
lic subsidies 

(SE131+Se605) / (SE275 + SE360 
+ (SE436 * imputed interest rate) 
+ (SE010 * hours of fulltime AWU 
* imputed wage per hour) + 
(SE025 * imputed rent per ha)). 
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5 Partial 
productivity 
indicators 

Average product 
of land  

Partial productivity indica-
tor, describing output per 
unit of the input land 

Output / land 

6 Partial 
productivity 
indicators 

Average product 
of labour 

Partial productivity indica-
tor, describing output per 
unit of the input labour 

Output / labour 

7 Partial 
productivity 
indicators 

Average product 
of capital 

Partial productivity indica-
tor, describing output per 
unit of the input capital 

Output / capital 

8 Partial 
productivity 
indicators 

Average product 
of intermediate 
expenses 

Partial productivity indica-
tor, describing output per 
unit of the input interme-
diate expenses 

Output / intermediate ex-
penses 

9 Additional in-
dicators 

Market orienta-
tion 

Revenue / (Revenue + 
subsidies) 
Describes how much a 
farm relies on public sub-
sidies, compared to pri-
vate revenues 

SE605 / (SE131 + SE605) 

10 Additional in-
dicators 

Equity ratio Equity / total assets SE501 / SE436 

Source: Based on suggestions of BOKU 

For imputed labour we used the ratio of paid wages (SE370) to paid labour input (SE020), devided by 
1800(hours/year of AWU in Hungary). For imputed interest rate, we used the base rate of the Central 
Bank of Hungary. For imputed land rent prices we used the land rent prices of arable land from the 
Hungarian Statistical Office (HCSO). For every imputed value we used the average values of the exam-
ined time period (2010-2015).  
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3.9 Farm technical and economic performance depending on the degree of ecological 
approaches: The case of olive farms in Crete, Greece (DEMETER) 

Alexandra Sintori, Vasilia Konstantidelli, Penelope Gouta and Irene Tzouramani  

 

Agricultural Economics Research Institute – DEMETER, Greece  

 

3.9.1 Introduction  

Olive cultivation is a well-established agricultural activity in the Mediterranean region and Greece. The 
activity is traditional in many parts of the country where a total of 792,642 ha is cultivated, with the 
Prefectures of Peloponnese and Crete accounting for 27% and 23% of the total area of olive groves 
kept in the country, respectively (HAS14,2017). The total number of trees cultivated in Greece in 2017 
was 148,053,557, which corresponds to an average density of 187 trees per hectare.  

Olive orchards are mainly cultivated in Greece for the purpose of olive oil production, which reached 
a total of 311,727 tons in 2017. The production of olive oil has received extra attention due to its 
significant role in the Mediterranean diet, recently acknowledged by UNESCO as an Intangible Cultural 
Heritage of Humanity (UNESCO, 2013). Indeed, the benefits of olive oil are well known globally (Covas 
et al., 2006), and the demand for the product is estimated to increase further, with new producing 
countries also appearing in the future (Mili and Bouhaddane, 2021).  

On the production side, these developments increase the interest of agriculturalists in the activity and 
the factors determining its economic performance and competitiveness in the global market. Our anal-
ysis focuses on the economic performance of Greek olive farms and examines productivity, profitabil-
ity, and efficiency indicators and drivers at the farm level. The analysis focuses on the region of Crete 
and, in particular, the Prefectures of Heraklion and Lasithi, located in the eastern part of the island. A 
total of 89,644 ha is cultivated in Heraklion with olive groves, and 27,086 ha of olive groves are located 
in Lasithi (HAS, 2017). These correspond to 15% of the total olive trees of the country and 17% of the 
total olive production. One of the reasons why the activity is common in Crete is the existing climatic 
conditions. Olive trees are characterised by an increased tolerance to drought and salinity (see, for 
example, Vasilaki et al., 2008), and they are well adapted to the Mediterranean climate of the Island. 

The average yield of olive groves in the area under investigation reaches 0.5 tons/ha, which exceeds 
the national average by approximately 12%. The density of the olive groves is slightly below the na-
tional average, which implies that the increased yield is the result of the higher productivity of the 
Cretan olive groves. The number of olive farms located in the area under investigation was 52,707 in 
2016, accounting for 12% of the total Greek olive farms (HAS, 2016). 

Organic olive cultivation is quite common in Greece. In the study area, 3% of the total area covered 
with olive groves is certified as organic, which corresponds to 3,721 ha and 1,016 farms (Tzouramani 
et al., 2019). Another common quality certification in the area under investigation is AGRO 2, which 
refers to the Integrated Management System (Duvaleix et al., 2020). The number of farms that held an 
AGRO 2 certification in the area under study was 2,508 in Heraklion and 2,658 in Lasithi, which equals 
an area of 6,623 ha and 5,422 ha, respectively (Duvaleix et al., 2020).  

                                                           
14 Hellenic Statistical Authority 
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The economic performance of the olive farms in this case study is estimated in our analysis using a 
number of productivity and profitability indicators described in the sections Data and Methods. Addi-
tionally, the technical efficiency of the olive farms is estimated using Data Envelopment Analysis (DEA). 
Efficiency analysis is commonly implemented in agricultural economics (Lansink and Reinhard, 2004; 
Theodoridis et al., 2006; Zhu and Demeter, 2012; Latruffe et al., 2017; Madau et al., 2017; Kurdyś-
Kujawska et al., 2021). The technical efficiency of olive farms has also been investigated in a number 
of studies abroad and in Greece (Lachaal et al., 2005; Lambarraa et al., 2007; Kashiwagi et al., 2012; 
Beltrán-Esteve, 2013; Jurado et al., 2017; Niavis et al., 2018; Stilitano et al., 2019; Raimondo et al., 
2021).   

The majority of these studies also investigate the endogenous and exogenous variables that determine 
the technical efficiency of the farms using various socioeconomic and technical variables (second stage 
analysis) (see, for example, Jurado et al., 2017; Niavis et al., 2018) like education level, age, experience, 
subsidies received, etc.  

The same path was also followed in this case study, in which a second stage regression analysis is 
performed to explore further the determinants of technical efficiency of olive farms. Additionally, the 
productivity, profitability, and efficiency indicators of the olive farms are examined across different 
agroecological farm types identified within the LIFT project to explore the effect of the degree of eco-
logical approaches on the economic performance of the farms. 

3.9.2 Data  

The economic analysis of the Cretan farms is implemented using the data gathered during the LIFT 
large scale farmer survey. The data were collected from olive and vineyard farms for which relevant 
economic indicators were estimated as described in the Methods section. The analysis then focuses 
on specialised olive farms for which technical efficiency was calculated.  

In our case study, we consider a farm as specialist olive when two-thirds of the farm output (revenues) 
come from olives (mainly oil production)15. Following this rule, 73 out of the 108 farms of the Greek 
sample are characterised as specialist olives. This group of farms was then checked for outliers since 
the DEA methodology that was performed is sensitive to outliers. Eight farms were excluded from the 
final sample of olive farms either for reporting no revenues or reporting zero intermediary, capital, or 
labour costs (incomplete interviews). The remaining 65 farms that were considered in the analysis have 
an average size of 4.9 hectares which yields on average 13,340€ of output (excluding subsidies) and 
correspond to 2,175 hours of labour (1.24 FTE16) (see also Table 3).   

The specialist olive farms were almost equally distributed between the two case study areas since 32 
are located in Heraklion and 33 in Lasithi. Their land is located in low altitudes, less than 600m, while 
30 of the farms report their farmland to be located at an altitude less than 300m. The majority of land 
is also irrigated (57 farms).  

Regarding their ecological profile, 27 farms are organic, 44 fall into the conservation farms category, 5 
are considered low input, 5 are integrated, and 5 are characterised as medium input, according to the 

                                                           
15 This rule is in line with the typology of farms in FADN according to their Standard Gross Margin (SGM). In our analysis we 
use the value of output instead of the SGM since the specific costs considered in the latter cannot be broken down to the 
activities of the farms (https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31985D0377&from=EN). The use of 
revenues for the definition of specialist olive farms in our analysis (compared to the use of GSM), implies that we consider 
the costs used for the SGM estimation to be proportional to the revenues when broken down between activities.   
16 One Full Time Equivalent (FTE) is equal to 1,750 hours of labour.  
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LIFT survey-based protocol for farm typology, developed within the LIFT project (Rega et al., 2021). 
The farm owners are in their majority male (52), and their average age is 53 years. They are considered 
experienced farmers since their average years of experience in agriculture are 31. Twenty-seven of 
them have higher education, and 33 have finished either middle school or high school. It should also 
be mentioned that 14 of them have agricultural education provided either at high school or at the 
university level. The labour inputs mainly derive from the farm household since 75% of the total labour 
comes from the family members. On average 1.1 members of the family offer their employment in the 
olive farms, while farms also occupy 2.89 hired workers, mainly seasonal, who perform tasks like har-
vesting olives or pruning the olive trees. 

Regarding the managerial profile of the olive farms, it should be emphasised that even though they 
specialise in olive production, pluriactivity is common since, on average, only one-third of the house-
hold income comes from agriculture. Finally, for the olive farms of the sample, the main distribution 
channel is the producers’ organisations, followed by merchants and wholesalers, and processors. At 
the same time, a very small part of the production is directly sold to consumers at an average selling 
price of 3.18€/kilo.  

The summary statistics of the main cost elements of the olive farms are presented in Table 1. As can 
be seen in Table 1, labour is an important part of the annual costs of the activity. Energy costs, which 
refer mainly to fuel costs, are also exceptionally high mainly because of Greek farms' structure, which 
usually consists of many land plots, often located at a distance from one another. This requires fre-
quent road trips to carry out the necessary tasks. Finally, it should be noted that, the cost elements 
presented in Table 1 are characterised by high standard deviation, which reflects the heterogeneity of 
the olive farms that are included in the sample, in terms of size and level of intensification. Additional 
economic and profitability indicators of the farms are provided in the Results section.  

Table 1: Main average annual costs of olive farms (€). 

 Mean Value St. Deviation CV 
Intermediary expenses   
Contract labour 753 2,661 353.39% 
Energy costs 1,810 2,272 125.52% 
Inorganic fertilisers 509 893 175.44% 
Manure 637 2,397 376.30% 
Pesticides  487 916 188.09% 
Water 708 1,204 170.06% 
Labour costs  

Family labour 6,616 5,499 
 

83.12% 
Hired labour 2,510 5,764 

 

229.64% 
Fixed costs    
Depreciation 3,621 2,703 74.65% 
Interests  945 1,064 112.59% 
Rents  2,205 1,745 79.14% 
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3.9.3 Methods  

The first step of our analysis refers to the estimation of certain productivity and profitability indicators 
for the olive farms17. Table 2 contains the definitions of the indicators used, which were calculated 
using the cost data (the main elements are already presented in Table 1) and the revenues of the farms. 
It should be emphasised that even if the case study refers to specialist olive farms, other agricultural 
activities may be present in the farms, which offer one-third of the revenues or less, and therefore all 
costs and revenues refer to the whole farm and not only to the olive groves.   

In order to test for statistically significant differences in the profitability and productivity indicators of 
farms along their degree of ecological approaches, the Mann-Whitney test was performed. This test 
was chosen as it does not assume a normal distribution of the population.  

Table 2: Definition of productivity and profitability indicators  

Indicator Definition 
Private revenue-cost-ratio not considering remu-
neration of owned production factors 

Revenue / (intermediate expenses+ depreciation + paid 
interest + paid labour + paid rent) 
 

Public revenue-cost-ratio not considering remu-
neration of owned production factors 

(Revenue + subsidies) / (intermediate expenses + de-
preciation + paid interest + paid labour + paid rent) 
 

Private revenue-cost-ratio considering remunera-
tion of owned production factors 

Revenue / (intermediate expenses + depreciation + paid 
interest + paid labour + paid rent + imputed interest + 
imputed labour + imputed rent) 
 

Public revenue-cost-ratio considering remunera-
tion of owned production factors 

(Revenue + subsidies) / (intermediate expenses + de-
preciation + paid interest + paid labour + paid rent + im-
puted interest + imputed labour + imputed rent) 
 

Average product of land  Partial productivity indicator, describing output per unit 
of the input land 
 

Average product of labour Partial productivity indicator, describing output per unit 
of the input labour 

Average product of capital Partial productivity indicator, describing output per unit 
of the input capital 

Average product of intermediary expenses Partial productivity indicator, describing output per unit 
of the input intermediary expenses 

Market orientation Revenue / (Revenue + subsidies) 
 

Equity ratio Equity/total assets (not applicable in the case of olive 
farms have no loans)  

 

The next step of the economic analysis of the olive farms refers to the estimation of their technical 
efficiency. The analysis involves the construction of a model that can depict the production process of 
the olive farms. All farms in the sample use a mix of inputs (capital, labour, and land) to produce an 
output. Some of these farms use their inputs more efficiently than others to produce the same output 
with less input or use the same input to produce more output. The analysis performed estimates an 

                                                           
17 The partial productivity and profitability indicators have been estimated for all the Greek farms (108 in total) that are 
included in the LIFT large scale farm survey as part of this deliverable. The results are provided in an attached excel file.  
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efficiency score for each farm in the sample, indicating how much the farm can reduce its inputs and 
still produce the same amount of output (input-oriented analysis). Table 3 summarises the statistics of 
the input and output variables that were used in the model. As in the case of the cost elements pre-
sented in Table 1, the standard deviation of the input and output variables is high, indicating the het-
erogeneity of the olive farms included in the sample.  

Table 3: Definitions and descriptive statistics of the input and output variables used in the analysis. 

 Definition Mean Value St. Devia-
tion 

 Inputs 
Intermediary expenses  All intermediary costs (e.g. 

fertilisers, pesticides, en-
ergy costs, contract la-
bour) 

5,242.45 5,970.07 

Capital Value of assets minus land 12,437.13 13,998.50 
Labour Labour inputs in hours 2,175.34 2,368.80 
Land  Land in Ha 4.91 3.67 
 Output 

Revenue  Total value of farm output 
(excluding subsidies) 

13,340 24,310.57 

 

The technical efficiency of the olive farms is estimated using an input-oriented, data envelopment 
analysis (DEA) model. DEA is a non-parametric method to estimate efficiency, developed by Charnes 
et al. (1978). The methodology is based on the construction of a production frontier where all the 
decision-making units (DMU), or in our case farms, that use a minimum level of inputs to produce a 
certain output lie. This production frontier is deterministic, and every deviation from the frontier is 
considered as inefficiency. The main advantage of DEA is that, unlike other methodologies (e.g., sto-
chastic frontier analysis), it does not a priori assume a specific form of a production function. In our 
analysis we use a variable returns to scale (VRS) specification to overcome the issue of scale inefficien-
cies (see for example Coelli et al., 2005; Ji and Lee, 2010), and the following model is formulated: 

min θ, 
Subject to: 

−yi + Yλ ≥ 0                                                                            (1) 
θxi − Xλ ≥ 0 

NI′λ = 1 
λ ≥ 0 

where: θ is the DMU’s index of technical efficiency, yi, and xi, refer to the outputs and inputs of DMU 
i, respectively, Yλ and Xλ are the projections on the constructed frontier and NΙ is a n × 1 vector of 
ones, that is used to prevent the comparison of farms with unequal sizes. This way Scale Efficiency (SE) 
can be calculated as the ratio of the constant returns to scale (CRS) TE score to the VRS TE score. The 
DMU is technically efficient when θi = 1. Therefore, 1 − θ indicates how much the DMU can propor-
tionally reduce its inputs and still produce the level of output.  

The final step of our analysis involves the second-stage regression analysis that is performed to inves-
tigate the association of the efficiency scores that the DEA model provides with certain characteristics 



  

LIFT – Deliverable D3.1  
 

L I F T - H 2 0 2 0  P a g e  92 | 246 

of the farm and farmer. The truncated regression analysis was performed using the set of explanatory 
variables presented in Table 4.  

The truncated regression analysis was chosen over the Ordinary Least Squares (OLS) regression since 
the estimations performed by the OLS regression analysis are considered biased and inconsistent, be-
cause the dependent variable, which consists of the efficiency scores is censored (Samut et al., 2016). 
Therefore, it is better to have the estimations done by Tobit or truncated regression; however, trun-
cated regression models are generally preferred and considered more appropriate (Simar and Wilson, 
2007; Dai et al., 2016; Li et al., 2017).  

Table 4: Definition of variables used in the second-stage regression analysis. 

Variable Definition 
Dependence on subsidies  Subsidies to total revenues ratio 
Low-input farms Binary variable that takes the value 1 if the farm is char-

acterised as Low-input according to the LIFT typology 
and 0 if the farm is not characterised as low input 
 

Organic Binary variable that takes the value 1 if the farm is char-
acterised as organic according to the LIFT typology and 
0 if the farm is not characterised as organic  
 

Experience Number of years of experience in farming  
 

Inorganic fertilisers Cost of inorganic fertilisers (€) 
 

Water  Cost of irrigation water (€) 
 

Agricultural education Binary variable that takes the value 1 if the farmer has 
agricultural education and 0 otherwise 

 

The variables used in the truncated regression analysis involve demographic characteristics of the 
farmer (experience and education) and managerial characteristics of the farm (market orientation, in-
organic fertilisers expenses, and water expenses). Additionally, the degree of ecological approaches 
was also used in the explanatory variables set (organic and low input farms). Other variables were 
considered but not used in the regression analysis for various reasons. Age of the farmer was strongly 
correlated with the experience variable and therefore was removed from the regression analysis. Fur-
thermore, the inclusion of site-specific variables (location of farms and altitude) in the regression anal-
ysis did not offer additional explanatory power to the variability of the dependent variable (efficiency 
scores). Managerial characteristics like farmer’s objectives, off-farm income, distribution channel, fam-
ily to total labour ratio etc.) were also excluded from the regression model for the same reason. The 
statistical analysis as well as the DEA analysis were performed in STATA/SE 13.0.  

3.9.4 Results  

Table 5 presents the summary statistics of the partial productivity and profitability indicators for the 
olive farms. The profitability indicators reveal that the olive farms in our case study can cover their 
intermediary expenses, the depreciation costs, and their paid labour and rents, since both the private 
and public revenue-cost ratios are higher than one, when the remuneration of owned production fac-
tors is not considered. However, the farms cannot cover the remuneration of their owned production 
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factors since the corresponding public and private revenue-cost ratio are lower than one. These results 
indicate that though olive farms can continue to operate in the short-run, adjustments need to be 
made so that net profit can be achieved. It should be emphasised also, that the years 2016-2018, were 
characterised by low yields in olive farms mainly due to unfavourable weather conditions and olive fly 
problems.  

As far as the partial productivity indicators are concerned, it is important to emphasise that the produc-
tivity of land is quite high (significantly higher than the rent per hectare) and also the productivity of 
labour is higher than the average wage per hour, as estimated by the gathered data (4.41€/ hour). 

The profitability and partial productivity indicators were also examined across the degree of ecological 
approaches, using the LIFT survey based protocol for the olive farm typology. The summary statistics 
of the partial productivity and profitability indicators per farm type are also presented in Table 5. As 
can be seen by the results the average partial productivity and profitability indicators are smaller in 
the case of medium- input farms, followed by conservation farms. The highest scores of the produc-
tivity and profitability indicators are presented in the agroecological farm type followed by the low-
input/integrated farms. Organic farms also achieve better profitability and partial productivity scores 
than medium input and conservation farms.  

The Mann Whitney test was performed to examine the statistical significance of the above differences 
in the profitability and partial productivity indicators across the degree of ecological approaches. 
Agroecological farms had statistically significant higher labour and land productivities as well as private 
and public profitability indicators considering remuneration of owned inputs (z=-2.975***18, z=-
1.611*, z=-1.952**, and z=-1.897**, respectively). Integrated and low input farms have a statistically 
significant different public and private revenue-cost ratio and land and labour productivities (z=-
2.031**, z=-2.155*, z=-1.797** and z=-3.324***, respectively). Finally, organic farms appear to have 
statistically significantly different public and private revenue-cost ratio considering remuneration of 
owned inputs than non-organic farms and also different labour productivity (z=-2.117**, z=-1.884*, 
z=-2.157**, respectively).  

The average technical efficiency of olive farms was estimated equal to 0.68. This result indicates the 
maximum feasible equi proportionate reduction of inputs that can be achieved, given the level of out-
put. Specifically, the average TE score indicates that all inputs can be reduced by 32% without compro-
mising the output level of the farms. This finding is in accordance with other studies that use similar 
analysis and focus on the estimation of the technical efficiency of olive farms in the Mediterranean 
region (Lachaal et al., 2005; Lambarraa et al., 2007; Kashiwagi et al., 2012; Stilitano et al., 2019; Rai-
mondo et al., 2021).  However, lower scores of technical efficiency are also commonly found in the 
case of Mediterranean olive farms (Beltrán-Esteve, 2013; Jurado et al., 2017). Tzouvelekas et al. (2001) 
estimated the technical efficiency of Greek conventional olive groves at 0.54, indicating that there is a 
lot of room for improvement regarding the utilisation of inputs. On the other hand, Niavis et al. (2018) 
estimated the technical efficiency of extensive olive farms in the area of Pelion, Greece, to be much 
higher (0.86). 

                                                           
18 Asterisks are used to summarise statistical significance level as: * corresponds to P ≤ 0.01, ** corresponds to P ≤ 0.05, *** 
corresponds to P ≤ 0.001 
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Table 5: Summary statistics of the profitability and productivity indicators for the sample farms and per 
agroecological type 

 Total 
farms 

Medium 
input Conservation Organic Integrated/ 

Low input 
Agroecological 

Indicator Mean (Standard deviation) 
Market orientation  0.73(0.27) 0.58(0.21) 0.70(0.24) 0.73(0.25) 0.86(0.11) 0.83(0.12) 
Average product of in-
termediary expenses   

3.37(6.26) 1.40(1.07) 2.37(1.76) 2.68(2.06) 2.80(1.86) 2.93(2.12) 

Average product of 
capital  

1.79(2.23) 1.48(1.80) 1.91(2.14) 1.99(2.34) 2.19(1.56) 2.43(1.69) 

Average product of la-
bour  

5.83(4.58) 3.44(3.52) 5.82(4.59) 7.74(5.64) 14.36(5.23) 14.95(5.84) 

Average product of 
land  

2390(1854) 2065(2166) 2197(1902) 2976(2270) 3678(1630) 3724(1878) 

Private revenue-cost 
ratio not considering 
remuneration of owned 
production factors  

1.01(0.70) 0.77(0.60) 0.89(0.53) 1.08(0.76) 1.13(0.44) 1.17(0.50) 

Public revenue-cost ra-
tio not considering re-
muneration of owned 
production factors  

1.30(0.73) 1.19(0.74) 1.22(0.57) 1.38(0.79) 1.33(0.52) 1.42(0.56) 

Private revenue-cost 
ratio considering remu-
neration of owned pro-
duction factors 

0.51(0.33) 0.36(0.33) 0.49(0.31) 0.62(0.41) 0.78(1.22) 0.80(2.45) 

Public revenue-cost ra-
tio considering remu-
neration of owned pro-
duction factors 

0.66(0.36) 
 

0.56(0.43) 0.67(0.34) 0.79(0.42) 0.92(0.27) 0.97(0.29) 

*The number of sample farms is 65, the number of medium input farms is 5, the conservation farms are 44, the Inte-
grated/Low input farms are 5, the Organic farms are 27 anf 4 farms are Agroecological. 

The results for scale efficiency (SE) indicate that the size of the majority of the olive farms is not opti-
mal, meaning that their level of production should be adjusted. Specifically, 49 farms operate at in-
creasing returns to scale (IRS), which means that their size (production level) should be increased. On 
the other hand, 7 farms operate at decreasing returns to scale (DRS), which means that their optimal 
size should be smaller. Finally, 9 farms operated under constant returns to scale (CRS), or in other 
words, have the optimal farm size. 

The reasons for technical inefficiency were further examined using truncated regression analysis, as 
mentioned in the sections Data and Methods. The results are presented in Table 7. The dependency 
on subsidies has a strong negative and statistically significant effect on the TE score (based on the 
coefficient and the p-value of this variable). This finding indicates that subsidies have a negative effect 
on the efficiency of farms and is according to the findings of other studies that focus on the technical 
efficiency of olive farms in Greece and the Mediterranean region (Zhu et al., 2011; Lambarraa and 
Kallas, 2010). 
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Table 6: Descriptive statistics of technical efficiency (TE), scale efficiency (SE) and scale of operation. 

 Sample farms 
Medium 
input 

Con-
serva-
tion 

Organic Conservation 
/Low input 

Agroeco-
logical 

Variable Mean Standard 
Deviation CV Min Max 

Mean  
(standard deviation) 

TE 0.68 0.28 41% 0.1 1 0.43 
(0.32) 

0.65 
(0.28) 

0.82 
(0.26) 

0.93 
(0.10) 

0.94 
(0.11) 

SE 0.78 0.24 31% 0.2 1  0.75 
(0.31) 

0.76 
(0.25) 

0.70 
(0.27) 

0.94 
(0.08) 

0.97 
(0.04) 

Scale of operation Decision making 
units (DMUs)/farms 

     

Increasing returns to scale (IRS) 49 (75%)      
Constant returns to scale (CRS) 9 (14%)      
Decreasing returns to scale (DRS) 7 (11%)      

 
Furthermore, the variable that refers to low input farms has a positive effect on technical efficiency, 
while the variable that refers to organic farming has no statistically significant effect on technical effi-
ciency. This is an important finding that stresses the significance of the agroecological practices imple-
mented in low-input farms regarding the limited use of inputs like inorganic fertilisers and soil condi-
tioners. On the other hand, the results regarding organic farming seem to be different from the results 
of similar studies that indicate that organic farms have a higher technical efficiency than conventional 
olive farms (Artukoglu et al., 2010; Raimondo et al., 2021). However, it should be emphasised that the 
low input olive farms in our sample are also organic farms which can, to some extent, justify this find-
ing. 

Experience also has a positive and statistically significant effect on the technical efficiency of olive 
farms, much stronger than the effect of agricultural education. These results emphasise the im-
portance of practice when it comes to agricultural activities that can overcome the importance of ac-
ademic education.  

Finally, what is also important to emphasise is the negative effect of the cost of inorganic fertilisers on 
the technical efficiency of olive farms. This is an indication of how the excessive use of these inputs 
can be an important determinant of technical inefficiency in olive farms and stress the need to limit 
their use. 

Table 7: Results of the Truncated Regression analysis. 

Variables Coefficient Std. Err. z P>z [95% Conf. Interval] 
Dependency on subsidies  -1.55 0.5246408 -2.95 0.003 -2.578277 -0.52172 
Low-input farms 0.8623388 0.5231186 1.65 0.099 -0.1629548 1.887632 
Organic -0.0540593 0.1294318 -0.42 0.676 -0.3077409 0.199622 
Experience 0.009534 0.0056331 1.69 0.091 -0.0015066 0.020575 
Inorganic fertilisers -0.0001289 0.0000696 -1.85 0.064 -0.0002653 7.60E-06 
Water  -0.0000739 0.0000498 -1.48 0.138 -0.0001716 2.38E-05 
Agricultural education 0.2720899 0.1819541 1.5 0.135 -0.0845336 0.628713 
Constant 1.031032 0.2343588 4.4 

 
0.5716977 1.490367 

3.9.5 Discussion and conclusions 

The efficient use of inputs and the ability of the farms to maintain their level of output while at the 
same time saving on the amount of resources used, is one of the main challenges of agriculture today, 
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especially in light of the growing demand for food and the input restrictions imposed by the on-going 
climate change.  Main agricultural production resources like land and water are becoming scarce, while 
at the same time, the pressure for improving farm productivity is increasing to feed the global popula-
tion. However, it has become apparent that traditional production models are not necessarily charac-
terised by efficiency in input use. At the same time, consumer demands for high-quality and environ-
mentally friendly products is increasing, drawing attention to the study of alternative agroecological 
practices and their impact on farm economic performance.  

In other words, the efficient use of inputs and natural resources is important not only for the farmer - 
as it improves the economic performance of the farm - but also for policymakers and consumers as it 
can limit the environmental burdens of agricultural production, release scarce resources and provide 
goods at lower costs.  

This study focuses on estimating the economic performance of Cretan olive farms in terms of produc-
tivity, profitability, and technical efficiency indicators. The analysis also considers the degree of eco-
logical approaches of the farms under investigation to determine the extent to which it affects farm 
economic performance.  

The results of the analysis indicate that, even though during the reference period the output of the 
farms was negatively affected by the environmental conditions and the olive fly damages to produc-
tion, the operating farms were able to cover their intermediary expenses, their paid rents and labour 
as well as depreciation costs of their assets. This allowed them to continue their operation in the short 
run, but the negative profitability indicators when imputed costs are included in the analysis impose a 
risk for the activity in the long run. Although low yields are significantly affecting the economic output 
of the farms, additional changes need to be made regarding the level of input use of the farms.  

Technical efficiency scores of the olive farms indicate that there is significant room for improvement 
of their management, as they can reduce their inputs by 32% and maintain the same level of output. 
The results of the truncated regression analysis indicate that inefficiencies are significantly associated 
with high dependency on subsidies.  At the same time, subsidies help maintain a positive profit, espe-
cially during low-yield years, which can be very important for olive production. These results need to 
be carefully considered by policymakers since one main objective of subsidies, i.e., maintaining farm 
income, is met. Still, at the same time, another objective, i.e., improving farm structure and manage-
ment, seems to be lacking. Perhaps the mixture of subsidies provided to the farmer needs to be ad-
justed to encourage managerial restructuring and technical and economic efficiency.  

The analysis also highlighted that agricultural education does not ensure the efficient use of inputs. On 
the other hand, experience seems to have a positive effect on the ability of farms to increase their 
technical efficiency. This is particularly important for traditional and well established farming activities 
like olive cultivation and should be considered when planning extension services. Newcomers in agri-
culture require sufficient practical training as opposed to theoretical education to compensate for the 
lack of experience, and extension services should adjust to these needs.  

Finally, the results of the analysis indicate that profitability and productivity indicators differ across the 
various degrees of ecological approaches. Farms characterised as agroecological, low input/integrated, 
and organic appear to have higher profitability and productivity indicators, while medium-input farms 
and conservation farms score lower in productivity and profitability. The results of the truncated re-
gression analysis verify the above findings for the case of low-input farms and emphasise that the 
transition to agroecological practices can improve farm efficiency.  
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To conclude it should be mentioned that several other factors that appeared to have no statistically 
significant impact on the technical efficiency scores in this analysis, should be further investigated in 
the future. The effect of the personal objectives of the farmer on the farm’s technical efficiency is not 
yet clear. At the same time, variables concerning the characteristics of the area e.g., altitude, also had 
no significant effect on the efficiency scores. However, additional sample farms maybe required to 
verify this result since the farms in the sample are mainly located in the lowland area.  

The analysis can also be performed using the Greek FADN data on olive farms to compare the average 
efficiency of olive farms. The use of FADN panel data could also address the low-yield problems en-
countered during the LIFT large-scale survey already mentioned and provide more robust results.  
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3.10 Dynamics of productivity and efficiency performance in Poland’s dairy farms: com-
parative analysis by different degrees of ecological approaches (IRWiR PAN) 

Katarzyna Zawalińska, Vitaliy Krupin 

 

Institute of Agricultural and Rural Development, Polish Academy of Sciences (IRWiR PAN), Ploland 

 

3.10.1 Introduction and description of the case study  

Polish dairy sector is the 4th largest producer of raw milk among all EU-27 member states (after Ger-
many, France and the Netherlands - Eurostat 2021), holding this position since the country’s accession 
to the EU in 2004. The average annual growth rate of the output (raw milk delivered to the dairies) 
within 2005-2019 equals 2.4%, which consistently led to delivery of 10.9 million tonnes of milk in 2015 
and 12.2 million tonnes in 2019. The total production of milk is even higher reaching 14.1 million 
tonnes in 2019 (GUS 2020). 

The number of dairy cows shows a permanent decline trend, reaching 2.28 million heads in 2015 and 
2.22 million heads in 2019 (compared to 2.8 million heads in 2004). Yet this decline is compensated by 
intensification of production processes and increasing productivity. Thus, the annual average produc-
tion of milk per cow has grown from 4,082 litres in 2004 (GUS 2007) to the 5,803 litres in 2019 (GUS 
2020). 

The total number of dairy cows in ecological farms across Poland in 2018 equalled 10983 (IJHARS 
2019), decreasing by 3.5% compared to previous year. This is merely 0.5% of the total country’s popu-
lation of dairy cows. Yet according to stakeholders (Kolasińska 2019) only about half of the ecological 
dairy farms sells their milk labelled as such, while the rest sell it as conventional product.  

Milk output in ecological farms has declined from 376304 hectolitres in 2010 (IJHARS 2011) to 253081 
hectolitres in 2018 (IJHARS 2019). Regional distribution of ecological dairy farms is completely different 
to overall distribution of ecological farms. Leading positions in this case have the Małopolskie, Pod-
karpacie and Zachodniopomorskie regions. 

In regard to the in-depth analysis carried out, within the Polish FADN database in 2015 there were 
2,694 dairy farms, yet only 57 had an ecological certificate and 1 was in the process of conversion. In 
2006 this distribution was different: 2,188 dairy farms, within which 25 with a certificate and none in 
the conversion. 

3.10.2 Method  

We applied three-step method in order to assess the efficiency of dairy farms in Poland according to 
their degree of ecological approaches. They are presented in the following three subsections, while 
the fourth subsection presents the approach to assessment of their potential drivers.   

3.10.2.1 Identification of farm types by degree of ecological approaches 

In the first step, we applied the LIFT FADN protocol, the final version developed by Rega et al. (2021), 
in order to distinguish the meaningful groups of dairy farms according to their degree of ecological 
approaches. We distinguished 8 ecological types - 4 basic: standard (ST), low-input (LI), integrated 
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(INT), organic (ORG) and 4 mixed types (INT-ORG, LI-INT, LI-INT-ORG, LI-ORG) - see Figure 1 and Table 
1.  

Analyses were started with 8 types of farms. Their shares in the total sample of dairy farms were over 
the years 2006-2015 on average as follows: standard (59.1%), integrated (30.2%), low-input (1.1%), 
organic (0.2%) and for the mixed types low-input integrated (6.9%), integrated-organic (1.5%), low-
input integrated organic (1%) and low-input organic (0.1%). We observed over that time an increasing 
number of farms and an increasing share in the structure for: standard farms (from 881 to 1,844 farms 
or 40.3% to 68.4%), integrated-organic (from 23 to 44 farms or 1.1% to 1.6%) and organic (from 1 to 9 
farms or 0.001% to 0.2%). The opposite was observed in case of: integrated farms (decline from 841 
to 684 farms or 38.4% to 25.4%), low-input (from 68 to 16 or 3.1% to 0.6%), low-input integrated (from 
348 to 82 farms or 15.9% to 3.0%), low-input integrated organic (from 26 farms to 14 or 1.2% to 0.5%). 
Only in case of low-input organic farms almost no changes were observed over that time, both in num-
ber and structure. 

 2006 2015 

 

 
Figure 1: Poland’s dairy farms according to their degree of ecological approaches based on LIFT FADN-
protocol 
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Table 1: Structure and dynamics of Poland’s dairy farms according to their degree of ecological ap-
proaches based on LIFT FADN-protocol 

YEAR ST INT INT-ORG LI LI-INT LI-INT-ORG LI-ORG ORG Annual total 
No % No % No % No % No % No % No % No % No % 

2006 881 40.3 841 38.4 23 1.1 68 3.1 348 15.9 26 1.2 0 0.0 1 0.0 2188 100 
2007 1087 47.6 797 34.9 24 1.0 40 1.7 308 13.5 29 1.3 0 0.0 1 0.0 2286 100 
2008 1533 62.3 701 28.5 38 1.5 20 0.8 138 5.6 24 1.0 1 0.0 5 0.2 2460 100 
2009 1461 58.0 731 29.0 24 1.0 25 1.0 239 9.5 33 1.3 2 0.1 4 0.2 2519 100 
2010 1236 53.8 791 34.4 31 1.3 28 1.2 173 7.5 32 1.4 1 0.0 5 0.2 2297 100 
2011 1344 60.0 706 31.5 40 1.8 16 0.7 105 4.7 21 0.9 2 0.1 6 0.3 2240 100 
2012 1451 65.6 609 27.5 43 1.9 11 0.5 72 3.3 18 0.8 2 0.1 6 0.3 2212 100 
2013 1684 64.9 726 28.0 59 2.3 14 0.5 78 3.0 21 0.8 1 0.0 12 0.5 2595 100 
2014 1835 69.7 643 24.4 51 1.9 18 0.7 66 2.5 15 0.6 0 0.0 4 0.2 2632 100 
2015 1844 68.4 684 25.4 44 1.6 16 0.6 82 3.0 14 0.5 1 0.0 9 0.3 2694 100 
Total 14356 59.1 7229 30.2 377 1.5 256 1.1 1609 6.9 233 1 10 0.1 53 0.2 24123 - 

Note: ST – standard, INT- integrated, LI- low-input, ORG-organic, the other are mix types of the basic four. Source: own cal-
culations based on WP1 FADN protocol (Rega et al., 2021). 

3.10.2.2 Comprehensive efficiency analyses by degree of ecological approaches 

In the second step, we applied a nonparametric DEA-based methods for individual degrees of ecolog-
ical approaches and for all groups together by applying: 1) Färe-Primont productivity change index 
(FPP) with its decomposition into technological change and efficiency changes for degrees of ecological 
approaches (Färe and Primont, 1995), and 2) Meta frontier Färe-Primont index for all degrees of eco-
logical approaches following calculation procedures proposed by Dakpo et al., (2016) and O’Donnell 
(2010). 

The efficiency change (EC) of the Färe-Primont index was further decomposed into the product of three 
elements – technical efficiency change (TEC), scale efficiency (SEC) change and residual mix efficiency 
change (RMEC). Usually, the decomposition is written separately for input- vs. output-oriented produc-
tivity changes (O’Donnell, 2010), however Dakpo et al. (2016) proposes an expression to account for 
both orientations simultaneously, which in practice is a geometric mean, as we applied here.  

In our analyses, decision making units (DMUs) which are farms that belong to different groups accord-
ing to their degree of ecological approaches (standard, integrated, low-input, organic and mixed), so it 
is reasonable to believe that they have distinct technologies. In that case, as suggested by Dakpo et al. 
(2016), it is also appropriate to estimate a meta-technology which would grasp all groups’ technologies 
(O’Donnell, Rao and Battese, 2008; Battese, Prasada Rao and O’Donnell, 2004; Battese and Rao, 2002).  

Comparing the points of maximum productivity on the individual group frontiers (for each farm type) 
with that of the meta-frontier (for all farm types together), we obtain the technology gap ratios (TGR)  
and their changes (TGRC) as suggested by O’Donnell and Fallah-Fini (2011) and Dakpo et al. (2016). 
TGR measure the difference between each group frontier and meta-frontier and assesses which groups 
are leading in shifting the meta-frontier. 

3.10.2.3 Common indicators of efficiency performance   

In addition to the comprehensive and dynamic efficiency analyses described in 2.2 we calculated 10 
technical-economic performance (TE) indicators based on FADN dataset for diary sector. The first four 
indicators from TE1 to TE4 are measures of profitability, the following four, from TE5 to TE8 are 
measures of partial productivity, and last two additional indicators are TE9 for market orientation and 
TE10 for equity ratios. They were calculated according to the following formulas in Table 2: 
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Table 2: Technical-economic indicators 
Indicator Description 
T1 (private revenue-cost-ratio not considering remuneration of owned production factors) as SE131 

/ (SE275 + SE360 + SE370 + SE375 + SE380). 
T2 (public revenue-cost-ratio not considering remuneration of owned production factors) as (SE131 

+ SE605) / (SE275 + SE360 + SE370 + SE375 + SE380). 
T3 (private revenue-cost-ratio considering remuneration of owned production factors) as SE131 / 

(SE275 + SE360 + SE370 + SE375 + SE380 + (SE436 * imputed interest) + SE015 * hours per year 
of AWU in respective country + (SE025-SE030) * (SE030/ILNDRNT_V)), where: Inputted interest 
= 1.125, which is 75% of national reference interest rate of 2015-2020; hours per year of AWU 
in Poland in 2015 – 2120. 

T4 (public revenue-cost-ratio considering remuneration of owned production factors) as (SE131 + 
SE605) / ((SE275 + SE360 + SE370 + SE375 + SE380) + (SE436 * 1.125) + SE015 * hours per year 
of AWU in respective country + (SE025-SE030) * (SE030/ILNDRNT_V)), where hours per year of 
AWU in Poland in 2015 – 2120. 

T5 (partial productivity indicator, describing output per unit of the input land) as SE131 / SE025. 
T6 (average product of labour) as SE131 / (SE010 * hours per year of AWU in respective country), 

where hours per year of AWU in Poland in 2015 – 2120. 
T7 (average product of capital) as SE131 / (SE436 - ALNDAGR_CV) (= closing value of agricultural 

land). 
T8 (average product of intermediary expenses) as SE131 / SE275. 
T9 (market orientation) as SE131 / (SE131 + SE605). 
T10 (equity ratio) as SE501 / SE436. 

Note: calculations for imputed interest come from National Bank of Poland (Narodowy Bank Polski, 2021) based on interest 
rates from 1998-2020, https://www.nbp.pl/homen.aspx?f=/en/dzienne/stopy_archiwum.htm (accessed on 7 April 2021). 

In order to compare the technical-economic farm performance along the degree of ecological ap-
proaches we applied the t-tests for the comparison of the means for ten TE indicators across all 8 
ecological types based on FADN protocol (based on WP1 as before). So for each ecological type we 
checked if the mean for each indicator is significantly different from the values in other types, with 
significance level at 1%, 5% and 10%. 

3.10.3 Data  

In our quantitative analyses we use a farm-level data from the EU Farm Accountancy Data Network for 
Polish farms for the years 2004-2015, however for calculations we used the years 2006-2015, because 
the first two years of FADN were not fully operational for our analyses due to inconsistency with later 
data (the FADN was gradually developed from 2004 of Poland’s accession to EU). Our initial FADN 
sample consisted of approximately 12 thousand farms per year (in 2015 it was 12,311 farms), repre-
senting over 730 thousand Polish farms with an annual standard output above 4,000 EUR, all combined 
providing 93% of total agricultural production in Poland (Floriańczyk et al., 2019). 

For our analyses we considered various variables characterising inputs and outputs of the farms. At 
the end after the analyses of their functional forms we selected four types of inputs defined as follows: 
1) farm total utilised area in hectares (UAA) (FADN code SE025); 2) the labour force expressed in annual 
working units (AWU) (code SE010); 3) intermediate consumption in the Polish currency (PLN) (code 
SE275); and 4) capital in PLN (code SE436-SE446). As for the output, a single variable was used (also 
for the sake of the meta-frontier calculations), which is the value of the farm’s total output in PLN 
(code SE131).  
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Table 3: Descriptive statistics for the Polish FADN dairy farms used for Färe-Primont analysis, 2006-
2015 

Type of farm; number of observations Min Max Mean Standard 
deviation 

Coefficient 
of variation 

All types together;  
no. of observations: 3140 

     

UAA [ha] 4.72 131.02 31.62 20.68 0.65 
Labour [AWU] 0.70 9.22 2.10 0.70 0.33 
Intermediate Consumption (PLN) 1963.17 326968.27 25843.46 26578.88 1.03 
Capital [PLN] 12751.15 1065869.78 151784.68 128481.01 0.85 
Total output [PLN] 2529.69 514420.03 51444.48 50180.18 0.98 
Type Standard;  
no. of observations: 1050 

     

UAA [ha] 7.77 131.02 37.46 23.65 0.63 
Labour [AWU] 1.12 9.22 2.31 0.85 0.37 
Intermediate Consumption (PLN) 5794.89 326968.27 42722.28 35548.07 0.83 
Capital [PLN] 38169.70 1065869.78 230039.99 158373.93 0.69 
Total output [PLN] 10149.11 514420.03 84051.02 64646.07 0.77 
Type Integrated;  
no. of observations: 70 

     

UAA [ha] 11.68 85.80 28.53 21.11 0.74 
Labour [AWU] 1.28 3.00 2.02 0.48 0.24 
Intermediate Consumption (PLN) 2031.65 29422.53 11481.39 6520.99 0.57 
Capital [PLN] 23413.85 135307.17 73269.31 33886.39 0.46 
Total output [PLN] 4243.94 59600.77 21853.48 12328.31 0.56 
Type LowInput-Integrated;  
no. of observations: 10 

     

UAA [ha] 44.69 48.71 46.47 1.84 0.04 
Labour [AWU] 1.76 2.20 1.99 0.12 0.06 
Intermediate Consumption (PLN) 8653.74 15145.10 12546.99 1832.70 0.15 
Capital [PLN] 89729.43 107468.10 99741.65 6438.72 0.06 
Total output [PLN] 31244.38 44743.59 37930.86 4230.90 0.11 
Type Mixed;  
no. of observations: 20 

     

UAA [ha] 18.13 19.71 19.12 0.45 0.02 
Labour [AWU] 0.70 3.53 2.07 1.11 0.53 
Intermediate Consumption (PLN) 5034.76 15158.02 8332.06 2971.48 0.36 
Capital [PLN] 35944.15 185457.91 102159.14 58474.69 0.57 
Total output [PLN] 6264.12 37977.03 18823.15 10833.01 0.58 
Type Changeables;  
no. of observations: 1990 

     

UAA [ha] 4.72 127.32 28.70 18.30 0.64 
Labour [AWU] 0.86 5.27 1.99 0.57 0.29 
Intermediate Consumption (PLN) 1963.17 133138.76 17685.56 14786.42 0.84 
Capital [PLN] 12751.15 705639.66 114016.32 88516.47 0.78 
Total output [PLN] 2529.69 267776.14 35676.67 30181.95 0.85 
Where: UAA - Total Utilised Agricultural Area [ha], (SE025); Labour -Total labour input [AWU] (SE010); Total intermediate 
consumption [PLN] (SE275); Capital: total assets - land, permanent crops & quotas [PLN] (SE436-SE446); Total Output [PLN] 
(SE131). Source: own calculations based on the Polish FADN. 

The application of the Färe-Primont index based analyses required special data procedures. First the 
balanced panel of farms was needed so that the same farms repeated in the sample for all 10 years. 
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Second, as the method is sensitive for outliers so the special procedures were applied to remove such 
observations according to the procedures proposed by Dakpo et al. (2016). 

As a result the data set was smaller but more consistent and homogeneous, and resulted in 5 types of 
ecological approaches because due to insufficient number of observations for econometric analyses 
some types needed to be aggregated. So the final set for which the results were generated is: 1) stand-
ard (ST), 2) Integrated (INT), 3) Lowinput-Integrated (LI-INT), 4) Mixed (MX) that is aggregation of INT-
ORG, LI-INT-ORG, LI-ORG, LI and ORG, and 5) Changeable (CHB) that are the farms which changed their 
type of ecological approach over 10 years. The descriptive statistics for the final set of data is presented 
in Table 3. 

3.10.4 Results  

3.10.4.1 Results with separate frontiers by types of ecological approaches 

The average TFP change indices at the year 2015 indicate the TFP change over the period 2006-2015. 
So there was TFP growth (values above 1) in case of standard, integrated and changeable farms but 
TFP decline in case of lowinput-integrated and mixed farms – see Figure 2. The highest growth was in 
case of integrated farms (18.1%), followed by standard (10.4% TFP growth) and changeable (4.3%). 
The TFP decline was higher for mixed ecological types (by 27.3%) than for lowinput-integrated (by 
17.2%). It is also visible that all ecological types were affected by the global crises which appeared at 
the end of 2008, so they all experience the TFP decline in 2009 – see Figure 2.  
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Figure 2: Färe-Primont productivity change and its decomposition, separate frontiers per ecological 
type. Source: own calculations based on the Polish FADN. 
 

For all ecological farm types the technological change (TC) was positive while the efficiency change 
(EC) was negative for all the types. TC was the strongest driving force of the TFP growth in case of 
integrated farms (TC increased by 64.3%), changeables (TC growth by 24.2%) and standard farms 
(17.9%). In case of lowinput-integrated the TC was similar to standard farms (TC growth by 16.8%) 
however the decline in efficiency was so large (EC dropped by about 30%) that the TFP declined as 
well, opposite to the case of standard farms where TC growth was higher than EC decline. The highest 
decline in efficiency (EC) was in case of ecologically mixed farms, by 35.5% - see Figure 2. The fact that 
in all ecological types the technological change was going in opposite direction to efficiency develop-
ment is an expected outcome justified in literature by the fact that not all producers can instantly 
adjust to new technology (Brümmer, Glauben and Thijssen, 2002; Latruffe, Fogarasi and Desjeux, 2012; 
Dakpo et al., 2016).  

Further decomposition of efficiency changes (EC) into technical efficiency change (TEC), scale efficiency 
change (SEC) and residual mix efficiency change (RMEC) was calculated. It shows that in case of stand-
ard farms the positive contribution to efficiency changes between 2005-2015 stem mainly from resid-
ual mix efficiency (increase by 12.2%) and scale efficiency (increase by 2.1%). So the farms managed 
to exploit their returns to scale factor and change other than only strictly farming practices (e.g. man-
agerial, etc.). In case of integrated farms all three components of efficiency deteriorated – the technical 
and scale efficiency in similar magnitude (by c.a. 6.5%) while residual mix efficiency by more than that 
(17.7%). Lowinput-integrated farms maintained their technical efficiency over the period but their 
scale efficiency substantially dropped (by 24.4%). Mixed and changeable farms experienced similar 
decline in technical efficiency (which means deterioration in their farming practices, however their 
development of scale and residual efficiency changes were diametrically different. Changeable farms 
made up for this decline by a slight positive development in their SEC and RMEC (by 0.08% and 0.05% 
respectively) while mixed farm experience both efficiencies declining (by 2.8% and 23.1% respectively). 

3.10.4.2 Results with meta-frontier  

When all ecological types are taken together we can see that the dairy sector in Poland experienced 
over the decade 2006-2015 a slight TFP growth (3.5%), mostly due to progress in technological change 
(24.3%), while efficiency actually declined (-16.7%). That decline was mainly due to deterioration in 
technical efficiency (by 18%) while scale efficiency slightly improved (1.8%) and residual mix efficiency 
almost has not changed (the value is close to 1) – see Table 4.        
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Table 4: Average TFP changes and its component for the Polish FADN dairy farms, using meta-frontier 
for all ecological farm types 

Source: own calculations based on the Polish FADN.  

The results of meta-frontier by ecological farm types reveals that the meta-technology is mainly made 
of standard farms (which have the highest TGR of 0.998) so they mostly form the frontier – see Table 
5. It is not surprising as they have access to the most productive technologies without ecological con-
straints. However, it is interesting that very close to them are farms with changeable ecological prac-
tices (TGR equals 0.928). The least productive technology is the one associated with group of ecologi-
cally mixed farms with TGR equal to 0.356, indicating that those farms reach only 35.6% of the maxi-
mum productivity that is feasible under the meta-technology. 

Table 5: Technology gap ratios for the Polish FADN dairy farms, 2006-2015 

Ecological types TGR average 
Standard 0.998 
Integrated 0.545 
LowInput-integrated 0.635 
Mixed 0.356 
Changeables 0.928 

Source: own calculations based on the Polish FADN.  

The changes of TGR over the years 2006-2015 (Table 6) show that standard farms are slightly losing 
their position as a leader of the technology in favour of changeable farms (TGR change for the former 
is slightly negative while for the latter it is +1.2%). Integrated farms which had only 54.5% of the overall 
meta-technology (Table 4) show however some signs of catching up with the technology experiencing 
the positive TGRC of 7.7%. Lowinput-integrated farms which have a bit less than halfway to the meta-
frontier (TGR of 63.5%) did not change that position over the decade (TGRC equal 1). Mixed farms are 
not only the farthest from the meta-frontier, but their situation was also deteriorating (as TGRC decline 
by 16.2%) especially last two years of analysed period. 
  

Years TFP change 
(TFP) 

Technological 
change  
(TC) 

Efficiency 
change 
(EC) 

Technical Effi-
ciency change  
(TEC) 

Scale Efficiency 
change 
(SEC) 

Residual Mix Ef-
ficiency change 
(RMEC) 

2006 1.000 1.000 1.000 1.000 1.000 1.000 
2007 1.078 1.181 0.913 0.935 0.990 0.986 
2008 1.013 1.181 0.858 0.880 1.001 0.974 
2009 0.910 1.181 0.770 0.774 0.997 0.998 
2010 1.035 1.181 0.876 0.880 0.997 0.999 
2011 1.018 1.181 0.862 0.876 0.994 0.990 
2012 1.002 1.181 0.849 0.849 1.003 0.997 
2013 1.032 1.181 0.873 0.871 1.007 0.995 
2014 1.184 1.243 0.953 0.928 1.025 1.003 
2015 1.035 1.243 0.833 0.820 1.018 0.998 
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Table 6: Technology gap ratio changes (TGRC) for the Polish FADN dairy farms by ecological farm types, 
2006-2015 

Years Standard Integrated LowInput- 
Integrated 

Mixed Changeables 

2006 1.000 1.000 1.000 1.000 1.000 
2007 1.000 1.202 0.929 0.818 0.937 
2008 1.000 1.118 1.278 1.065 1.028 
2009 1.000 0.924 1.132 0.892 1.090 
2010 0.993 1.000 1.051 0.835 1.090 
2011 1.000 1.039 0.976 0.776 0.891 
2012 0.987 0.967 0.996 0.878 1.090 
2013 1.000 1.121 0.946 0.801 1.082 
2014 1.000 1.199 0.941 0.694 0.889 
2015 1.000 1.196 0.749 0.616 1.023 
Average  0.998 1.077 1.000 0.838 1.012 

Source: own calculations based on the Polish FADN. 

3.10.4.3 Results of common indicators of technical-economic performance 

Comparison of farm performance by all degrees of ecological approaches validated by t-tests compar-
ing the means (Table 6) shows that the ecological farm groups the least significantly differ in terms of 
intermediary partial productivity (TE8), equity ratio (TE10) and partial productivity of capital (TE7) and 
most significantly differ in terms of market orientation (TE9), partial productivity of land (TE5), partial 
productivity of labour (TE6) and private profitability when remuneration of owned production factors 
is included (TE3).  

Standard farms have significantly higher level of all technical-economic indicators, except for profita-
bility measured by TE2, average product of intermediary expenses (TE8) and equity ratio (TE10) for 
which three the values are significantly lower. Organic farms, on the contrary, differ significantly only 
in terms of “market orientation” (TE9). That indicator is significantly lower for those farms than for the 
other types. That means that those farms rely less on public subsidies compared to private revenues 
than other farm types. At the same time, organic farms are not significantly different in terms of prof-
itability and productivity indicators from the others. Integrated and lowinput-integrated farms show 
similar performance results, so their values for most of the TE indicators are significantly lower. Excep-
tions are: profitability measured by TE1 - for which lowinput-integrated have significantly higher value 
than integrated and other types of farms, as well as profitability measured by TE2 and equity ratio 
measured by TE10 - for which both farm types have significantly higher mean values. Interestingly, 
low-input type does not differ significantly from other ecological farm types in terms of partial produc-
tivity of capital (TE7) and intermediary partial productivity (TE8) as well as equity ratio (E10). Also 
lowinput-organic is not significantly different from other types in terms of profitability measured by 
TE4, partial productivity of capital (TE7) and equity ratio (TE10).  
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Table 7: Summary of t-test results for technical-economic indicators by ecological types, 2015 (FADN 
protocol) 

Performance  
indicator Type of farms T1_ST T2_INT T3_INT-ORG T4_LI T5_LI-INT T6_LI-INT-

ORG T8_ORG 

TE1 
t-value -3.7651 5.8549 3.1297 0.08 -4.8789 -4.2542 -0.445 
Pr(|T| > |t|) 0.0002*** 0.0000*** 0.0018*** 0.9363 0.0000*** 0.0000*** 0.6563 

TE2 t-value 9.7447 -3.5575 -1.0712 -2.1934 -11.8856 -7.5968 -0.9339 
Pr(|T| > |t|) 0.0000*** 0.0004*** 0.2842 0.0284** 0.0000*** 0.0000*** 0.3504 

TE3 t-value -18.2599 14.9579 6.1679 2.4446 3.675 1.673 1.2827 
Pr(|T| > |t|) 0.0000*** 0.0000*** 0.0000*** 0.0146** 0.0002*** 0.0944* 0.1997 

TE4 t-value -11.4972 9.9708 4.9686 1.6323 0.7099 0.601 1.3 
Pr(|T| > |t|) 0.0000*** 0.0000*** 0.0000*** 0.1027 * 0.4778 0.5479 0.1937 

TE5 
t-value -29.5537 24.0621 5.7536 2.8182 7.9463 2.801 -0.1829 
Pr(|T| > |t|) 0.0000*** 0.0000*** 0.0000*** 0.0049*** 0.0000*** 0.0051*** 0.8549 

TE6 
t-value -20.718 16.358 4.8924 2.7253 6.3314 2.7867 0.8375 
Pr(|T| > |t|) 0.0000*** 0.0000*** 0.0000*** 0.0065*** 0.0000*** 0.0054*** 0.4024 

TE7 
t-value -11.8611 10.114 4.2477 1.1184 1.7915 1.3376 0.7161 
Pr(|T| > |t|) 0.0000*** 0.0000*** 0.0000*** 0.2635 0.0733* 0.1811 0.474 

TE8 
t-value 3.7115 -0.0485 -0.0559 -0.2499 -6.6907 -6.3555 -1.0141 
Pr(|T| > |t|) 0.0002*** 0.9613 0.9554 0.8027 0.0000*** 0.0000*** 0.3106 

TE9 
t-value -35.6137 24.9315 9.9702 4.2919 10.9205 3.7837 3.5812 
Pr(|T| > |t|) 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0002*** 0.0003*** 

TE10 
t-value 3.4639 -2.5221 -0.9308 -0.2181 -2.3845 -0.532 1.4642 
Pr(|T| > |t|) 0.0005*** 0.0117*** 0.352 0.8274 0.0172** 0.5948 0.1433 

Note: Two-sample t test with equal variances, unpaired – (experimental, excluded from the analysis), significance levels: *** 
at 1%, ** at 5% and * significant at 10%. 

3.10.5 Discussion and conclusions 

According to statistical data the ecological production in Poland in the dairy sector is declining in the 
past years. This was confirmed by the analysis of FADN data, which has shown that not only the share 
of certified ecological dairy farms is small, but these numbers are also small within all farm groups 
outlined according to LIFT classification of ecological approaches. What is more important – all key 
groups (integrated and low-input) have shown declining trends over the analysed timeframe, which 
means that utilisation of ecological and sustainable approaches in Polish dairy farming is not gaining 
popularity.  

Over the period of 2006-2015 a TFP growth was revealed in case of standard, integrated and change-
able farms, yet a decline in case of lowinput-integrated and mixed farms. The highest growth was in 
case of integrated farms, followed by standard and changeables. The TFP decline was higher for mixed 
ecological types compared for lowinput-integrated. It is also visible that all ecological types were af-
fected by the global crises which appeared at the end of 2008, so they all experience the TFP decline 
in 2009. 

As far as the meta-frontier analysis is concerned, with all ecological types are taken together we can 
see that the dairy sector in Poland over the decade 2006-2015 experienced a slight TFP growth mostly 
due to progress in technological change, yet the efficiency declined. The decline was mainly due to 
deterioration in technical efficiency, while scale efficiency slightly improved with the residual mix effi-
ciency almost not changing. 

Key limitations to the analysis are the low number of farms implementing various ecological ap-
proaches, which results in limited confidence level of their data analysis, as well as has limited possi-
bility of use as policy recommendation for farms implementing ecological approaches. On the other 
side, it is a precise reflection of the processes undergoing in the Polish dairy sector and are supported 
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by the desk research data and interactions with stakeholders within LIFT workshops. Key issues block-
ing the development of ecological practices in farming dwell primarily within the economic and insti-
tutional dimensions.  

Thus, the conclusions of the presented analysis can serve the policy makers in understanding what the 
current policies for Polish agricultural sector lack to contribute to achievement of the European sus-
tainability goals, among other the European Green Deal targets. It is clear from the findings that the 
measures aimed at increasing the uptake of ecological approaches in Polish agriculture within the pre-
vious (2007-2013) and ongoing (2014-2020) Common Agricultural Policy have not been efficient 
enough, yet at the same time they did not target this issue to an extent that is understood now. There-
fore, this needs to be considered in the next CAP programming period. 
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3.11 Productivity and efficiency of pig and poultry farms differentiated by degrees of 
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3.11.1 Introduction and description of the case study  

The sector of granivores consists of two major sections: pigs and poultry. As these differ to a great 
extent in both production processes, technologies and output, the analysis will be divided into the 
corresponding parts.  

In regard to the in-depth analysis carried out, within the Polish FADN database in 2015 there were 755 
granivore farms, yet only 4 had an ecological certificate and none were in the process of conversion. 
In 2006 this distribution was similar, yet the number of farms was 2.6 times higher: a total of 1,998 
granivore farms, within which only 3 with a certificate and none in the conversion. 

Currently the pig sector in Poland accounts 10.8 million heads (as of June 2019), which is the result of 
29% decline since 2010 (GUS 2020). The share of Polish pig population within the EU equals 7.6%, 
placing Poland at 6th place (after Spain, Germany, France, Denmark and the Netherlands).  

Information about ecological farms in this sector or their output is highly limited. According to Eurostat 
(2021) there were 4,189 head of organic pigs in 2019, which makes 0.04% of the total pig population 
kept by Polish farms. Eurostat (ORG_APROD parameter) and Statistics Poland (the official Polish statis-
tics service) lack data on organic pig meat production whatsoever. 

The poultry sector is showing the most dynamic growth rates, as its produce is finding both permanent 
domestic and growing foreign demand. Currently Poland is the indisputable leader in production of 
poultry meat in the EU-27 with the output of 2,593 thousand tonnes produced in 2019. The same 
indicator in 2010 equalled 1,342 thousand tonnes, meaning the growth rate reached 93.2% within nine 
years. Poland is also the 6th largest producer of poultry eggs among all EU-27 member states (after 
France, Germany, Spain, Italy, and the Netherlands) with 657 thousand tonnes or 12,056 million units 
produced in 2019 (GUS 2020). 

Information about ecological farms in this sector or their output is highly limited. According to Eurostat 
(2021) there were 405,405 laying hens (0.7% of the total) and 21,218 broilers (0.02%) at Polish farms 
in 2019. This shows the extremely small scale of ecological farming in the poultry sector. 

3.11.2 Method  

The methods proposed in the paper were used for: 1) dividing granivores farms into groups different 
in terms of their degree of ecological approaches, 2) assessing of each group’s individual and aggre-
gated productivity and efficiency performance during 10 years, 3) identifying possible drivers of TFP 
and efficiency changes. They methods are presented in the following four subsections.  
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3.11.2.1 Identification of farm types by degree of ecological approaches 

In the first step, we applied the FADN protocol, developed by Rega et al. (2021), in order to distinguish 
the meaningful groups of granivore farms according to their degree of ecological approaches. We dis-
tinguished 8 ecological types - 4 basic: standard (ST), low-input (LI), integrated (INT), organic (ORG) and 
4 mixed types (INT-ORG, LI-INT, LI-INT-ORG, LI-ORG) - see Figure 1 and Table 1.  

We identified 8 ecological types of farms and their shares in the total sample of the granivores farms 
were over the years 2006-2015 on average as follows: standard (78%), integrated (18.3%), low-input 
(0.7%%), organic (0.4%) and for the mixed types low-input integrated (2.2%), integrated-organic 
(0.3%), low-input integrated organic (0.1%) and low-input organic (0.3%). We observed over that time 
a declining number of standard farms (from 1,013 to 638) and increasing number of organic farms 
(from 0 to 5 farms), however the shares of both types were increasing – for standard from 50.7% to 
84.6% and for organic from 0% to 0.7%. In case of integrated farms, we observed a substantial decline 
in their number (873 to 92) and share (from 43.7% to 12.2%) between 2006-2015. Low-input farms 
also declined, however less dramatically - from 24 to 5 farms which means from 1.2% to 0.7%. Similarly, 
lowinput-integrated farms decline in numbers (81 to 13) and in structure (4.1% to 1.7%). Interestingly, 
there were no lowinput-organic farms over that period. For the remaining types, integrated-organic 
and lowinput-integrated-organic farms almost no changes were observed over that time both in num-
ber and structure. 
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Figure 1: Poland’s granivore farms according to their degree of ecological approaches based on LIFT 
FADN-protocol 
 

Table 1: Structure and dynamics of Poland’s granivore farms according to their degree of ecological 
approaches based on LIFT FADN-protocol 

YEAR 
ST INT INT-ORG LI LI-INT LI-INT-ORG LI-ORG ORG Total 

No % No % No % No % No % No % No % No % No % 
2006 1013 50.7 873 43.7 4 0.2 24 1.2 81 4.1 2 0.1 0 0 0 0 1997 100 
2007 1218 62.7 648 33.3 4 0.2 15 0.8 55 2.8 1 0.1 0 0 3 0.2 1944 100 
2008 1446 84.5 232 13.6 4 0.2 9 0.5 13 0.8 0 0 0 0 8 0.5 1712 100 
2009 807 80.9 159 15.9 2 0.2 11 1.1 14 1.4 0 0 0 0 4 0.4 997 100 
2010 726 75.4 189 19.6 4 0.4 7 0.7 33 3.4 0 0 0 0 4 0.4 963 100 
2011 682 80.4 131 15.4 5 0.6 6 0.7 20 2.4 0 0 0 0 4 0.5 848 100 
2012 668 86.6 73 9.5 4 0.5 6 0.8 15 1.9 1 0.1 0 0 4 0.5 771 100 
2013 718 86 91 10.9 3 0.4 5 0.6 13 1.6 1 0.1 0 0 4 0.5 835 100 
2014 690 87.7 71 9 2 0.3 4 0.5 14 1.8 1 0.1 0 0 5 0.6 787 100 
2015 638 84.6 92 12.2 1 0.1 5 0.7 13 1.7 0 0 0 0 5 0.7 754 100 
Total 8606 78.0 2559 18.3 33 0.3 92 0.7 271 2.2 6 0.1 0 0.0 41 0.4 11608 - 

Note: ST - is standard, INT- integrated, LI- low-input, ORG-organic, the other are mixed of those four. Source: own calculations 
based on WP1 FADN protocol (Rega et al., 2021). 

3.11.2.2 Comprehensive efficiency analyses by degree of ecological approaches 

In the second step, we applied a nonparametric DEA-based methods for individual degrees of ecolog-
ical approaches and for all groups together by applying: 1) Färe-Primont productivity change index 
(FPP) with its decomposition into technological change and efficiency changes for different degrees of 
ecological approaches (Färe and Primont, 1995), and 2) Meta frontier Färe-Primont index for all de-
grees of ecological approaches following calculation procedures proposed by Dakpo et al., (2016) and 
O’Donnell (2010). 

The efficiency change (EC) of the Färe-Primont index was further decomposed into the product of three 
elements – technical efficiency change (TEC), scale efficiency (SEC) change and residual mix efficiency 
change. Usually, the decomposition is written separately for input- vs. output-oriented productivity 
changes (O’Donnell, 2010), however Dakpo et al. (2016) proposes an expression to account for both 
orientations simultaneously, which in practice is a geometric mean.  

In our analyses, DMUs belong to different groups according to their degree of ecological approaches 
(standard, integrated, low-input, organic and mixed), so it is reasonable to believe that they have dis-
tinct technologies. In that case, as suggested by Dakpo et al. (2016), it is also appropriate to estimate 
a meta-technology which would grasp all groups’ technologies (O’Donnell, Rao and Battese, 2008; 
Battese, Prasada Rao and O’Donnell, 2004; Battese and Rao, 2002).  

Comparing the points of maximum productivity on the individual group frontiers (for each farm type) 
with that of the meta-frontier (for all farm types together), we obtain the technology gap ratios (TGR)  
and their changes (TGRC) as suggested by O’Donnell and Fallah-Fini (2011) and  Dakpo et al. (2016) . 
TGR measure the difference between each group frontier and meta-frontier and assesses which groups 
are leading in shifting the meta-frontier. 
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3.11.2.3 Common indicators of efficiency performance   

In addition to the comprehensive and dynamic efficiency analyses described in 2.2 we calculated 10 
technical-economic performance (TE) indicators based on FADN dataset for diary sector. The first four 
indicators from TE1 to TE4 are measures of profitability, the following four, from TE5 to TE8 are 
measures of partial productivity, and last two additional indicators are TE9 for market orientation and 
TE10 for equity ratios. They were calculated according to the following formulas in Table 2: 

Table 2: Technical-economic (TE) performance indicators 

Indicator Description 
T1 (private revenue-cost-ratio not considering remuneration of owned production factors) 

as SE131 / (SE275 + SE360 + SE370 + SE375 + SE380). 
T2 (public revenue-cost-ratio not considering remuneration of owned production factors) 

as (SE131 + SE605) / (SE275 + SE360 + SE370 + SE375 + SE380). 

T3 (private revenue-cost-ratio considering remuneration of owned production factors) as 
SE131 / (SE275 + SE360 + SE370 + SE375 + SE380 + (SE436 * imputed interest) + SE015 
* hours per year of AWU in respective country + (SE025-SE030) * (SE030/ILNDRNT_V)), 
where: Inputted interest = 1.125, which is 75% of national reference interest rate of 
2015-2020; hours per year of AWU in Poland in 2015 – 2120. 

T4 (public revenue-cost-ratio considering remuneration of owned production factors) as 
(SE131 + SE605) / ((SE275 + SE360 + SE370 + SE375 + SE380) + (SE436 * 1.125) + SE015 
* hours per year of AWU in respective country + (SE025-SE030) * (SE030/ILNDRNT_V)), 
where hours per year of AWU in Poland in 2015 – 2120. 

T5 (partial productivity indicator, describing output per unit of the input land) as SE131 / 
SE025. 

T6 (average product of labour) as SE131 / (SE010 * hours per year of AWU in respective 
country), where hours per year of AWU in Poland in 2015 – 2120. 

T7 (average product of capital) as SE131 / (SE436 - ALNDAGR_CV) (= closing value of agri-
cultural land). 

T8 (average product of intermediary expenses) as SE131 / SE275. 
T9 (market orientation) as SE131 / (SE131 + SE605). 
T10 (equity ratio) as SE501 / SE436. 

Note that calculations for imputed interest come from National Bank of Poland (Narodowy Bank Polski, 2021) based on in-
terest rates from 1998-2020, https://www.nbp.pl/homen.aspx?f=/en/dzienne/stopy_archiwum.htm (accessed on 7 April 
2021). 

In order to compare the technical-economic farm performance along the degree of ecological ap-
proaches we applied the t-tests for the comparison of the means for ten TE indicators across all 8 
ecological types based on FADN protocol (based on WP1 as before). So for each ecological type we 
checked if the mean for each indicator is significantly different from the values in other types, with 
significance level at 1%, 5% and 10%. 

3.11.3 Data 

In our quantitative analyses we use a farm-level data from the EU Farm Accountancy Data Network for 
Polish farms for the years 2004-2015, however for calculations we used the years 2006-2015 because 
the first two years of FADN were not fully operational for our analyses due to inconsistency with later 
data (the FADN was gradually developed from 2004 of Poland’s accession to EU). Our initial FADN 
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sample consisted of approximately 12 thousand farms per year (in 2015 it was 12,311 farms), repre-
senting over 730  thousand Polish farms with an annual standard output above 4,000 EUR, and they 
provide 93% of total agricultural production in Poland (Floriańczyk et al., 2019). Out of this set we 
selected pig and poultry farms (granivores) which in TP14 nomenclature have code #50. Over the ana-
lysed period there were 11,608 of such farms.   

For our analyses we considered various variables characterising inputs and outputs of the farms. At 
the end after the analyses of their functional forms we selected four types of inputs defined as follows: 
1) farm total utilised area in hectares (UAA) (FADN code SE025); 2) the labour force expressed in annual 
working units (AWU) (code SE010); 3) intermediate consumption in the Polish currency (PLN) (code 
SE275); and 4) capital in PLN (code SE436-SE446). As for the output, a single variable was used (also 
for the sake of the meta-frontier calculations), which is the value of the farm’s total output in PLN 
(code SE131) – see Table 3.  

Table 3: Descriptive statistics for the Polish FADN granivores farms used for Färe-Primont analysis, 
2006-2015 
Type of farm; number of observations Min Max Mean Standard 

deviation 
Coefficient 
of variation 

Type Standard;  
no. of observations: 780 

     

UAA [ha] 5.20 138.67 31.38 21.99 0.70 
Labour [AWU] 0.54 6.41 2.08 0.89 0.43 
Intermediate Consumption (PLN) 6564.78 366326.35 74283.37 67667.83 0.91 
Capital [PLN] 12202.15 1394295.71 195272.84 186627.78 0.96 
Total output [PLN] 8212.24 457595.16 109203.91 96323.03 0.88 
Type Integrated;  
no. of observations: 20 

     

UAA [ha] 23.33 38.04 32.07 4.57 0.14 
Labour [AWU] 1.45 1.95 1.71 0.14 0.08 
Intermediate Consumption (PLN) 19612.99 34406.92 27082.35 4776.43 0.18 
Capital [PLN] 84349.94 238023.00 141905.12 44607.74 0.31 
Total output [PLN] 33660.56 60164.55 47967.41 7720.37 0.16 
Type Changeables;  
no. of observations: 1140 

     

UAA [ha] 5.44 481.71 32.52 43.57 1.34 
Labour [AWU] 0.74 16.90 2.08 1.06 0.51 
Intermediate Consumption (PLN) 5648.69 880973.81 63598.34 82999.25 1.31 
Capital [PLN] 15192.14 1564824.01 182883.15 185708.99 1.02 
Total output [PLN] 6184.04 1452603.40 97747.55 123977.96 1.27 
All types together;  
no. of observations: 1940 

     

UAA [ha] 5.20 481.71 32.06 36.19 1.13 
Labour [AWU] 0.54 16.90 2.08 0.99 0.47 
Intermediate Consumption (PLN) 5648.69 880973.81 67517.93 77011.51 1.14 
Capital [PLN] 12202.15 1564824.01 187442.12 185282.29 0.99 
Total output [PLN] 6184.04 1452603.40 101840.52 113219.26 1.11 
Where: UAA - Total Utilised Agricultural Area [ha], (SE025); Labour -Total labour input [AWU] (SE010); Total intermediate 
consumption [PLN] (SE275); Capital: total assets - land, permanent crops & quotas [PLN] (SE436-SE446); Total Output [PLN] 
(SE131). Source: own calculations based on the Polish FADN. 
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The application of the Färe-Primont index based analyses required special data procedures. First the 
balanced panel of farms was needed so that the same farms repeated in the sample for all 10 years. 
Second, as the method is sensitive for outliers so the special procedures were applied to remove such 
observations according to the procedures proposed by Dakpo et al. (2016). As a result, the data set 
was smaller than the initial one (1,940 farms) but more consistent and homogeneous, and resulted in 
3 types of ecological approaches because due to insufficient number of observations for econometric 
analyses some types needed to be aggregated. So the final set for which the results were generated 
is: 1) standard (ST), 2) Integrated (INT), and 3) Changeables (CHB) – the last category are the farms 
which changed their degree of ecological approaches over 10 years. The descriptive statistics for the 
final set of data is presented in Table 3. 

3.11.4 Results 

3.11.4.1 Results with separate frontiers by degree of ecological approaches 

The TFP changes over the whole period 2006-2015 for each farm type are expressed by indices from 
2015 – see Figure 2. So we can see that there was TFP growth (values above 1) in case of standard and 
changeable farms, but there was a TFP decline in case of integrated farms. The highest TFP growth was 
in case of changeable farms (18.7%), followed by standard (8.6% TFP growth), while integrated farms 
experience TFP decline (- 25.4%). It is interesting to see that the global crises of 2008 affected the farm 
types in different way – TFP dynamics of standard farms seemed not to be much affected, the change-
less experience slow down over the consecutive years (from 2009-2011) and integrated experienced 
deeper shock in 2009 and quick recovery in 2010-2011 – see Figure 2.  

For all ecological farm types the technological change (TC) was positive. On the contrary, the efficiency 
change (EC) was negative - for standard and integrated types –and almost not changed for changeables 
(TFP close to 1). Usually, the technological change is going in opposite direction to efficiency develop-
ment which indicates that not all producers can instantly adjust to new technology (Brümmer, Glauben 
and Thijssen, 2002; Latruffe, Fogarasi and Desjeux, 2012; Dakpo et al., 2016). So interestingly, in case 
of changeables most of the farms were able to catch up with the advancement in the technology. TC 
was the strongest driving force of the TFP growth in case of standard farms (TC increased by 28.6%), 
and it was smaller but similar for the other two types - for integrated (TC growth by 19.1%) and change-
ables (18.5%). The highest decline in efficiency (EC) was in case of integrated farms, by 37.4%, and 
smaller in case of standard farms by 15.6% - see Figure 2.  
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Figure 2: Färe-Primont productivity change and its decomposition, separate frontiers per ecological 
type for granivores. Source: own calculations based on the Polish FADN. 
 
We decomposed the efficiency changes (EC) into technical efficiency change (TEC), scale efficiency 
change (SEC) and residual mix efficiency change (RMEC). The results are presented in Figure 2. They 
show that between 2005-2015 the changeable farms were most successful in maintaining their effi-
ciency change. They managed to do so mainly due to substantial improvement in their residual mix 
efficiency (by 21.4%), that means improvement in other than farming practices. The improvement was 
big enough to overcome the substantial decline in technical efficiency (by -15.7%) stemming from de-
terioration in farming practices and a slight decline in scale efficiency (by -2.2%). Contrary, standard 
farms were not successful in maintaining their efficiency and it declined mainly due to decline in tech-
nical efficiency (by -17.1%) and scale efficiency (by -1.5%) despite that their residual mix efficiency 
increased slightly (by 3.5%). In case of integrated farms all three components of efficiency deteriorated 
by similar value - the technical efficiency by -11.9%, scale efficiency by -15.8% and residual mix effi-
ciency by -15.6%. As for reaction of the farms to global financial crises of 2008, visible in statistics for 
2009, it seems that changeable did the best, followed by standard farms while the most affected were 
integrated farms. However, since 2010 all recovered primarily due to technological change.  
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3.11.4.2 Results with meta-frontier  

When all ecological farm types are taken together we can see that the granivores sector in Poland 
experienced between 2006-2015 a TFP growth by 9.6%, and it was mostly due to progress in techno-
logical change (26.8%), while efficiency declined (by -13.6%). That decline was mainly due to deterio-
ration in technical efficiency (by -17.4%) and scale efficiency (by -10%) while the residual mix efficiency 
actually increased (by +5.8%) – see Table 4. 

Interestingly, the results of meta-frontier by ecological farm types show that the meta-technology is 
mainly made of changeable farms not the standard farms. The former has the highest TGR of 0.943 
while for the latter TGR is 0.939– see Table 5. It means that farm changing their ecological practices 
have access to more productive technologies than the standard farms in pig and poultry sector. Look-
ing at the dynamics of the TGRs, it seems that changeables took over the lead from standard farms in 
the frontier since 2012. The least productive technology and very far from the frontier is the one for 
integrated farms with TGR equal to 0.409, indicating that those farms reach only about 41% of the 
maximum productivity that is feasible under the meta-technology. The dynamics show that actually 
the situation deteriorates rather than improve, and especially badly this type is doing since 2012.   

Table 4: Average TFP changes and its component for the Polish FADN granivores farms, using meta-
frontier for all ecological farm types  

Source: own calculations based on the Polish FADN.  

Table 5: Technology gap ratios (TGR) for the Polish FADN granivores farms, 2006-2015 

Years Standard Integrated Changeables 
2006 0.886 0.412 1.000 
2007 1.000 0.436 0.972 
2008 1.000 0.360 0.877 
2009 1.000 0.519 0.956 
2010 1.000 0.509 0.833 
2011 1.000 0.488 0.816 
2012 0.749 0.332 1.000 
2013 0.806 0.328 1.000 
2014 1.000 0.367 0.975 
2015 0.948 0.337 1.000 

Years TFP change 
(TFP) 

Technological 
change  
(TC) 

Efficiency 
change 
(EC) 

Technical Ef-
ficiency 
change  
(TEC) 

Scale Effi-
ciency 
change 
(SEC) 

Residual Mix 
Efficiency 
change 
( RMEC) 

2006 1.000 1.000 1.000 1.000 1.000 1.000 
2007 0.989 1.000 0.989 0.949 1.008 1.033 
2008 1.116 1.206 0.925 0.977 1.023 0.925 
2009 1.148 1.206 0.952 1.004 1.034 0.917 
2010 1.064 1.206 0.882 0.935 1.031 0.914 
2011 1.048 1.206 0.869 0.918 1.031 0.918 
2012 1.175 1.268 0.927 0.890 1.001 1.040 
2013 1.141 1.268 0.900 0.879 0.984 1.040 
2014 1.178 1.268 0.929 0.887 1.000 1.046 
2015 1.096 1.268 0.864 0.826 0.990 1.058 
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TGR Average  0.939 0.409 0.943 
Source: own calculations based on the Polish FADN.  

The dynamics of TGR change over the years 2006-2015 presented in Table 6 indicate that standard 
farms were strengthening their leadership position especially in the first half of that period so in gen-
eral their TGRC showed positive development (increase by 6.0%). 
The changeables on average showed negative dynamics of TGRC (-5.7%) which was mainly caused by 
substantial drop in their TGR in years after crises (-16.7% in 2010 and -18.4% in 2011). The average 
decline in TGRC of that sector was even worse than in case of integrated farms sector (for the latter 
the TGRC declined on average by -0.8%). However, despite those declines, changeables were on av-
erage at 94.3% level of meta-frontier while integrated farms at only 41%.  



  

LIFT – Deliverable D3.1  
 

L I F T - H 2 0 2 0  P a g e  119 | 246 

Table 6: Technology gap ratio changes (TGRC) for the Polish FADN granivores farms by ecological farm 
types, 2006-2015 

Years Standard Integrated Changeables 
2006 1.000 1.000 1.000 
2007 1.129 1.057 0.972 
2008 1.129 0.875 0.877 
2009 1.129 1.259 0.956 
2010 1.129 1.235 0.833 
2011 1.129 1.184 0.816 
2012 0.845 0.806 1.000 
2013 0.910 0.796 1.000 
2014 1.129 0.891 0.975 
2015 1.071 0.817 1.000 
Average  1.060 0.992 0.943 

Source: own calculations based on the Polish FADN.  

3.11.4.3 Results of common indicators of technical-economic performance 

We calculated 10 indicators of technical-economic performance for granivores farms by all 8 types of 
ecological approaches obtained from FADN protocol described in chapter Identification of farm types 
by degree of ecological approaches and validated by t-tests if their means are significantly different 
(see Table 7). The results show that all the farm groups do not significantly differ in terms of partial 
productivity of land (TE5) and equity ratio (TE10). Organic farms, in addition to those two indicators 
do not differ significantly from the others in terms of market orientation (TE9). Otherwise, organic 
farms have significantly higher values for all technical-economic indicators.  

Table 7: Summary of t-test results for technical-economic indicators by ecological types for granivores, 
2015 (FADN protocol) 

Performance  
indicator 

Type of 
farms 

T1_ 
ST 

T2_INT T3_INT-
ORG 

T4_LI T5_LI-INT T6_LI-
INT-
ORG 

T7_LI-
ORG 

T8_ORG 

TE1 t-value 3.6274 -1.6803 . -1.0524 -2.7334 . . -2.6907 
Pr(|T| > |t|) 0.0003*** 0.0933* . 0.2929 0.0064*** . . 0.0073*** 

TE2 
t-value 5.9391 -3.9433 . -0.6227 -3.6228 . . -2.3452 

Pr(|T| > |t|) 0.000*** 0.0001*** . 0.5337 0.0003*** . . 0.0193** 

TE3 
t-value -1.9588 3.8445 . -2.1696 0.6333 . . -5.86 

Pr(|T| > |t|) 0.0505** 0.0001*** . 0.0304** 0.5267 . . 0.000*** 

TE4 
t-value -1.5805 3.4921 . -2.1178 0.5785 . . -6.1078 

Pr(|T| > |t|) 0.1144 0.0005*** . 0.0345** 0.5631 . . 0.000*** 

TE5 
t-value 0.1682 0.044 . -0.2084 -0.4059 . . -0.1319 

Pr(|T| > |t|) 0.8665 0.9649 . 0.8349 0.6849 . . 0.8951 

TE6 
t-value -3.6554 5.1408 . -2.4778 0.588 . . -3.0837 

Pr(|T| > |t|) 0.0003*** 0.000*** . 0.0134** 0.5567 . . 0.0021*** 

TE7 t-value -1.7669 3.8426 . -2.7654 0.3678 . . -5.8446 
Pr(|T| > |t|) 0.0776* 0.0001*** . 0.0058*** 0.7131 . . 0.000*** 

TE8 t-value 6.4467 -3.9012 . 0.0785 -5.4788 . . -1.5451 
Pr(|T| > |t|) 0.000*** 0.0001*** . 0.9375 0.000*** . . 0.1228 

TE9 
t-value -7.9133 8.4334 . -1.6082 2.3752 . . -1.1984 

Pr(|T| > |t|) 0.000*** 0.000*** . 0.1082 0.0178** . . 0.2311 

TE10 
t-value -0.3044 -0.362 . 1.2247 1.3704 . . -0.3289 

Pr(|T| > |t|) 0.7609 0.7174 . 0.2211 0.171 . . 0.7423 
Note: Note: Two-sample t test with equal variances, unpaired – (experimental, excluded from the analysis), significance lev-
els: *** at 1%, ** at 5% and * significant at 10%. Source: own calculations. 



  

LIFT – Deliverable D3.1  
 

L I F T - H 2 0 2 0  P a g e  120 | 246 

Standard farms do not differ significantly from other farms, apart from TE5 and TE10 with respect to 
profitability indicator (TE4). Otherwise they have significantly higher values of TE2, TE3, TE6, TE7 and 
TE9 and significantly lower values for TE1 and TE8.  

Integrated farms have significantly lower values of most of the indicators, i.e. profitability if remuner-
ation of owned production factors is considered (i.e., TE3 and TE4), partial productivity of labour (TE6) 
and partial productivity of capital (TE7) as well as market orientation (TE9). On the other side inte-
grated farms have significantly higher values of profitability measured by TE1 and TE2, that when the 
remuneration of owned production factors is not considered, and partial intermediary productivity 
(TE8).     

Low-input farms do not significantly differ in terms of most of the indicators, and they have significantly 
higher values only for two profitability indicators taking into account remuneration of owned produc-
tion factors (TE3 and TE4) as well as for two partial productivities, of labour (TE6) and capital (TE7).  

Lowinput-integrated farms have significantly higher profitability indicators when no remuneration of 
owned production factors are included (TE1 and TE2) as well as for partial intermediary productivity 
(TE8). On the contrary, significantly lower values in this group are for market orientation (TE9). 

Other mixed types (INT-ORG, LI-INT-ORG and LI-ORG) are not enough represented by farms to be able 
to compare the means.  

All in all the granivores ecological farm groups the least significantly differ in terms of partial land 
productivity (TE5) and equity ratio (TE10) for other indicators they are rather significantly different for 
most ecological types of farms.  

3.11.5 Discussion and conclusions  

According to statistical data the ecological production in Poland in the pigs and poultry sector (com-
bined in the report as the “granivores”) is drastically low. The share of pigs kept in certified ecological 
farms equals 0.07% of the total pig population, the share of laying hens – 0.7% and broilers – less than 
0.02%. Among them the only type of livestock showing growth in the ecological output are the laying 
hens by manifesting a 52% growth of head numbers within 2017-2018.  

These conclusions were confirmed by the analysis of FADN data, which has shown that not only the 
share of certified ecological dairy farms is extremely small, but these numbers are also drastically small 
within all farm groups outlined according to LIFT classification of ecological approaches. What is more 
important – all key groups (integrated and low-input) have shown declining trends over the analysed 
timeframe, which means that utilisation of ecological and sustainable approaches in Polish pigs and 
poultry farming is not gaining popularity. The only major group beside standard farms, being the inte-
grated ones, has shrunk from 873 to 92 farms within 2006-2015. 

Over the period of 2006-2015 a TFP growth (values above 1) was revealed in case of standard and 
changeable farms, but there was a TFP decline in case of integrated farms. The highest TFP growth was 
in case of changeable farms, followed by standard, while integrated farms experience TFP decline. It is 
interesting to see that the global crises of 2008 affected the farm types in different way – TFP dynamics 
of standard farms seemed not to be much affected, the changeless experience slow down over the 
consecutive years (from 2009-2011) and integrated experienced deeper shock in 2009 and quick re-
covery in 2010-2011. 

As far as the meta-frontier analysis is concerned, with all ecological types are taken together we can 
see that the granivores sector in Poland experienced between 2006-2015 a TFP growth by 9.6%, and 
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it was mostly due to progress in technological change, while efficiency declined. That decline was 
mainly due to deterioration in technical efficiency and scale efficiency, while the residual mix efficiency 
actually increased. 

Key limitations to the analysis are the low number of farms implementing various ecological ap-
proaches, which results in limited confidence level of their data analysis, as well as has limited possi-
bility of use as policy recommendation for farms implementing ecological approaches. On the other 
side, it is a precise reflection of the processes undergoing in the Polish granivores sector and are sup-
ported by the desk research data and interactions with stakeholders within LIFT workshops. Key issues 
blocking the development of ecological practices in farming dwell primarily within the economic and 
institutional dimensions.  

Thus, the conclusions of the presented analysis can serve the policy makers in understanding what the 
current policies for Polish agricultural sector lack to contribute to achievement of the European sus-
tainability goals, among other the European Green Deal targets. It is clear from the findings that the 
measures aimed at increasing the uptake of ecological approaches in Polish agriculture within the pre-
vious (2007-2013) and ongoing (2014-2020) Common Agricultural Policy haven’t been efficient 
enough, yet at the same time they didn’t target this issue to an extent that is understood now. There-
fore, this needs to be considered in the next CAP programming period. 
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3.12 Innovation and eco-system based drivers of total farm factor productivity: assess-
ment based on LIFT large-scale survey (with emphasis on dairy and granivore farms 
in Poland) (IRWiR PAN) 

Katarzyna Zawalińska and Vitaliy Krupin 

 

Institute of Agricultural and Rural Development, Polish Academy of Sciences (IRWiR PAN), Poland 

 

3.12.1 Introduction and description of the case study  

Polish dairy sector is the 4th largest producer of raw milk among all EU-27 member states (after Ger-
many, France and the Netherlands - Eurostat 2021), holding this position since the country’s accession 
to the EU in 2004. The average annual growth rate of the output (raw milk delivered to the dairies) 
within 2005-2019 equals 2.4%, which consistently led to delivery of 10.9 million tonnes of milk in 2015 
and 12.2 million tonnes in 2019. The total production of milk is even higher reaching 14.1 million 
tonnes in 2019 (GUS 2020). 

The number of dairy cows shows a permanent decline trend, reaching 2.28 million heads in 2015 and 
2.22 million heads in 2019 (compared to 2.8 million heads in 2004). Yet this decline is compensated by 
intensification of production processes and increasing productivity. Thus, the annual average produc-
tion of milk per cow has grown from 4,082 litres in 2004 (GUS 2007) to the 5,803 litres in 2019 (GUS 
2020). 

The sector of granivores consists of two major sections: pigs and poultry (MRiRW 2016). Currently the 
pig sector in Poland accounts 10.8 million heads (as of June 2019), which is the result of 29% decline 
since 2010 (GUS 2020). The share of Polish pig population within the EU equals 7.6%, placing Poland 
at 6th place (after Spain, Germany, France, Denmark and the Netherlands).  

The poultry sector is showing the most dynamic growth rates, as its produce is finding both permanent 
domestic and growing foreign demand. Currently Poland is the indisputable leader in production of 
poultry meat in the EU-27 with the output of 2,593 thousand tonnes produced in 2019. The same 
indicator in 2010 equalled 1,342 thousand tonnes, meaning the growth rate reached 93.2% within nine 
years. Poland is also the 6th largest producer of poultry eggs among all EU-27 member states (after 
France, Germany, Spain, Italy, and the Netherlands) with 657 thousand tonnes or 12,056 million units 
produced in 2019 (GUS 2020). 

3.12.2 Method and data 

Our quantitative analysis is based on information from a large-scale survey, carried within H2020 pro-
ject LIFT in 2019, where 100 of the Polish farms were interviewed. The survey was very detailed, with 
hundreds of questions, focusing on very detailed farm practices and strategies in farm types differing 
with respect to their degree of ecological approaches. The questions referred, among the other, to 
innovations and ecosystem approaches.   

We extracted information for 100 Polish farms in division into five farm types which are in the centre 
of our interest (i.e., field crop farms, horticulture, granivores, dairy and mixed farms). For those farm 
types we extracted information about the drivers of their total factor productivity (TFP) changes which 
according to Coomes et al., (2019) stem from:  
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1) sources of innovations such as gene revolution, enhanced input delivery, hardware & software, post-
harvest management – that is technological approach to TFP growth, and  

2) adapted variety of ecosystem services such as biological pest control, pollinator management, inte-
grated crop-livestock practices, rotation & soil conservation – that is ecosystem–based approach to 
TPF growth.  

Following this approach we identified in our database 8 indicators within 4 categories of sources of 
innovations and 24 indicators within 4 categories for ecosystem services, presented below:  

I. Sources of innovations: 
1. Gene revolution: 

I.1 Varieties tolerant of weeds. 
2. Enhanced input delivery: 

I.2 Precision technologies to target application rate. 
I.3 Precision technologies to guide herbicide application. 

3. Hardware, software and data: 
I.4 Decision making tools to support management of precision technologies. 
I.5 Machine controlled application. 
I.6 Soil mapping. 

4. Post-harvest management: 
I.7 Leaving crop residues on soil. 
I.8 Planting of catch crops. 

II. Ecosystem services: 
1. Biological pest control: 

II.1 Pest/disease resistant/tolerant varieties. 
II.2 Machine weeding. 
II.3 Manual weeding. 
II.4 Thermal weed control. 
II.5 Integrated weed management (IWM) principles. 

2. Pollinator management: 
II.6 Hedgerows. 
II.7 Bushes. 
II.8 Wet areas. 
II.9 Tree lines. 
II.10 Woodland on UAA (coppice, afforested areas, woodlots, etc.). 
II.11 Isolated trees. 
II.12 Field margins. 
II.13 Buffer strips. 
II.14 Flower strips. 

3. Integrated crop-livestock practices: 
II.15 Application of animal manure on arable land. 
II.16 Application of animal manure on pastures. 
II.17 Presence of livestock. 
II.18 Arable land for temporary grassland-type forage production, thereof. 
II.19 permanent grassland area with pure meadows (only cut). 
II.20 Permanent grassland area with pure pastures (only grazed). 

4. Rotation and soil conservation: 
II.21 Crop rotation. 
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II.22 Crop diversification. 
II.23 Selection of traditional/locally adapted varieties. 
II.24 Mixed cropping (including intercropping, alley cropping, relay crop-
ping). 
 

The statistics related to those indicators by farm types are presented in the Results section and they 
are further used for assessing the sources of technological change driving TFP among the groups of 
farms. 

3.12.3 Results  

Table 1 shows various innovations adopted by farm types, contributing to TFP change while Table 2 
shows the ecosystem-services adopted by farm types contributing to TFP change. The farming sectors 
differ substantially in adoption of innovations, where the leading sector was dairy (with the highest 
percentage of farm adopting innovations) and second best granivores (with all the investigated eco-
system-based services present in the sector). The least innovating seem to be the mixed farms. How-
ever, also those less innovating farming sectors have in some cases high percentage of innovations 
adopted, e.g., varieties of tolerant weeds in case of field crop and horticulture, leaving crop residues 
on soil in field crop farms or planting of catch crops mixed farms – see Table 1. 

Table 1: Innovation-based drivers of TFP changes (% of farms) 

Drivers Indicators Field crop Horticulture Granivores Dairy Mixed 

Ge
ne

 re
vo

lu
-

tio
n 

Varieties tolerant of weeds 35 50 7 63 6 

En
ha

nc
ed

 in
-

pu
t d

el
iv

er
y Precision technologies to tar-

get application rate 10 0 11 63 0 

Precision technologies to 
guide herbicide application 0 8 11 63 3 

Ha
rd

w
ar

e,
 so

ftw
ar

e 
an

d 
da

ta
 

Decision making tools to sup-
port management of preci-
sion technologies 

0 0 7 63 0 

Machine controlled applica-
tion 5 0 7 50 0 

Soil mapping 0 8 11 63 6 

Po
st

-h
ar

ve
st

 
m

an
ag

em
en

t 

Leaving crop residues on soil 30 8 18 38 6 

Planting of catch crops 20 17 32 63 22 

Source: own calculations based on LIFT large-scale farm survey of 100 Polish farms. 
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The farming sectors differ also substantially in adoption of ecosystem services – see Table 2. The lead-
ers in our sample are dairy farms and granivores, as they have the highest percentages of farms adopt-
ing the practices in all categories – biological pest control, pollinator management, integrated crop-
livestock practices, to rotation and soil conservation. 

Table 2: Ecosystem based drivers of TFP changes (% of farms) 

Drivers Indicators Field crop Horticulture Granivores Dairy Mixed 

Bi
ol

og
ic

al
 p

es
t c

on
-

tr
ol

 

Pest/disease resistant/tolerant 
varieties 60 33 14 88 22 

Machine weeding 40 67 36 75 56 
Manual weeding 45 42 36 100 47 
Thermal weed control 5 0 4 0 - 
Integrated weed management 
(IWM) principles 10 0 7 63 16 

Po
lli

na
to

r m
an

ag
em

en
t 

Hedgerows 5 25 7 25 6 
Bushes 10 33 36 25 19 
Wet areas 10 0 11 0 13 
Tree lines 0 0 4 0 6 

Woodland on UAA (coppice, affor-
ested areas, woodlots, etc) 0 0 11 13 13 

Isolated trees 40 33 61 63 56 
Field margins 55 33 43 50 66 
Buffer strips 5 8 4 0 0 
Flower strips 0 0 4 25 9 

In
te

gr
at

ed
 c

ro
p-

liv
es

to
ck

 p
ra

ct
ic

es
 Application of animal manure on 

arable land 75 58 100 100 88 

Application of animal manure on 
pastures 0 25 93 88 56 

Presence of livestock  30 25 100 88 91 
Arable land for temporary grass-
land-type forage production, 
thereof: 

10 17 71 88 50 

(a) permanent grassland area with 
pure meadows (only cut) 55 8 39 75 63 

(b) Permanent grassland area 
with pure pastures (only grazed) 10 0 4 0 22 

Ro
ta

tio
n 

an
d 

so
il 

co
ns

er
va

tio
n 

Crop rotation 50 50 89 88 84 
Crop diversification 25 33 57 63 38 
Selection of traditional/locally 
adapted varieties 15 17 18 50 16 

Mixed cropping (including inter-
cropping, alley cropping, relay 
cropping) 

0 0 4 38 3 

Source: own calculations based on LIFT large-scale farm survey of 100 Polish farms. 

Over 80% of dairy farms declared application of pest/disease resistant/tolerant varieties (88%), manual 
weeding (100%), application of animal manure on arable land (100%) and pastures (93%), presence of 
livestock (88%), arable land for temporary grassland-type forage production (88%) and crop rotation 
(88%). Above 80% of granivore farms declared application of animal manure on arable land (100%) 



  

LIFT – Deliverable D3.1  
 

L I F T - H 2 0 2 0  P a g e  127 | 246 

and pastures (93%), presence of livestock and crop rotation (89%). Half or more of mixed farms de-
clared machine weeding (56%), isolated trees (56%), field margins (66%), application of animal manure 
on arable land (88%) and pastures (56%), arable land for temporary grassland-type forage production 
(50%), presence of livestock (91%), permanent grassland are with pure meadows (63%) and crop rota-
tion (84%). Most of the horticulture farms in our sample apply machine weeding (67%), application of 
manure on arable land (58%) and crop rotation (50%). Majority of field crop farms declare application 
of pest/disease resistant/tolerant varieties (60%), field margins (55%), application of animal manure 
on arable land (75%), permanent grassland areas with pure meadows, only cut (55%) and crop rotation 
(50%). 

3.12.4 Discussion and conclusions  

Various innovations adopted by farm types were analysed, contributing to TFP change, as well as the 
ecosystem-services adopted by farm types contributing to TFP change. The farming sectors differ sub-
stantially in adoption of innovations, where the leading sector was dairy (with the highest percentage 
of farm adopting innovations) and second best granivores (with all the investigated ecosystem-based 
services present in the sector). The least innovative seem to be the mixed farms.  

However, also those less innovating farming sectors have in some cases high percentage of innovations 
adopted, e.g., varieties of tolerant weeds in case of field crop and horticulture, leaving crop residues 
on soil in field crop farms or planting of catch crops mixed farms.  

Over 80% of dairy farms declared application of pest/disease resistant/tolerant varieties (88%), manual 
weeding (100%), application of animal manure on arable land (100%) and pastures (93%), presence of 
livestock (88%), arable land for temporary grassland-type forage production (88%) and crop rotation 
(88%). 
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3.13 Environmentally-friendly practices and economic performance in dairy and beef 
cattle farming in France (INRAE and VetAgro Sup) 

Kassoum Ayouba 1 *, Laure Latruffe 2, Philippe Jeanneaux 1, Yann Desjeux 2, K Herve Dakpo 3  
 

1 INRAE, VetAgro Sup, Territoires, Clermont-Ferrand, France  

2 INRAE, GREThA, Université de Bordeaux, Pessac, France  

3 INRAE, EcoPub, Paris, France  

* Corresponding author 

 

3.13.1 Introduction 

Scientific studies show that agroecological practices are essential to reduce the use of fertilisers, pes-
ticides, antiparasitic and veterinary antibiotics, which have negative impacts on the environment and 
human health. More and more farmers are now implementing environmentally-friendly practices that 
enhance biodiversity and natural regulations, such as crop diversification, extensification of livestock 
farming, association between plant and animal production, enhancement and maintenance of grass-
lands, reduction in the size of plots, no-till, direct-sowing. Some researchers have carried out compar-
ative reviews of technical, economic, social, or environmental performance of organic farming versus 
conventional farming and results are not clear-cut. In addition, studies comparing the performance 
between farms using one specific environmentally-friendly practice and those that do not, are limited. 

In this context, the objective of this article is to contribute to this empirical literature and compare the 
economic performance of farms that apply a higher degree of environmentally-friendly practices and 
farms with a lower implementation of such practices. In what follows, as several practices will be con-
sidered separately, for clarity reason we will call the former ‘ecological farms’ and the latter ‘non-
ecological farms’. The application is to a sample of dairy and beef cattle specialist farms in France in 
2018, whose data were collected through a specific survey. 

3.13.2 Dairy and beef cattle farming in France  

France was the main agricultural producing country in the European Union (EU) in 2018 (Eurostat, 
2018). The French agricultural sector production value was about 76 billion Euros (without subsidies, 
that were close to 8 billion Euros), including crop production (46 billion Euros), animal production (26 
billion Euros) and agricultural services (4 billion Euros). Within animal production, dairy and beef gross 
outputs amounted to 17 billion Euros, including 5.8 billion Euros for beef and dairy cows, 1.2 billion 
Euros for calves, and 10 billion Euros for milk. Dairy and beef cattle farms received direct animal sub-
sidies from the CAP, amounting 643 million Euros for beef production and 93 million Euros for dairy 
production. These farming systems had 1 billion Euros veterinary expenses and 7 billion Euros in cost 
of concentrated feed.  

In 2016, the farming population consisted in 430,000 farms and about 158,000 were dairy or beef 
cattle specialists. 45,000 were specialised in dairy production and 57,000 were specialised in beef meat 
production, while 8,000 farms produced both milk and beef meat and 48,000 were large livestock sys-
tems producing field crops and raising cattle for meat or milk production (Agreste, 2018). All these 
farms produced 24 million tons of cow’s milk, a quantity that has stagnated over a long time, and 1.68 
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million tons carcass equivalent including 1.45 million adult cattle (live animals weighing more than 
300kg) and 0.224 million calves. One of the particularities of the French beef production is that half of 
the calves of about 10 months old produced in France are exported (with a large majority - 72% - going 
to the Po Valley in Italy and 28% being fattened in Spain or Turkey), and the other half is fattened in 
Western and Eastern France (CNE and IDELE, 2016). 

The majority of dairy and beef cattle farms in France are conventional farms, although the number of 
organic farms is continuously increasing (Agreste, 2019; Agence Bio, 2020). In general, in France (all 
productions together), there were in 2019 about 47,200 farms in organic farming, that is to say 10.4% 
of farms and 8.3% of the French utilised agricultural area (UAA). The latter has doubled over the past 
5 years, from 1.1 million hectares (ha) in 2014 to 2.3 million ha in 2019. As regard cattle farms specifi-
cally, in 2019 there were 5,824 organic suckler cow farms breeding about 212,000 animals. This repre-
sented 5.3% of French suckling farms and 2% of the quantity of beef produced in France. One third of 
organic beef production was concentrated in three French regions: Pays-de-La-Loire (Western France), 
Midi-Pyrénées (Southern France) and Auvergne (Central France). As for organic dairy farms, they were 
4,564 in 2019, with about 243,000 animals. This represented 4.2% of the French dairy farms and 4% of 
the quantity of milk produced in France. 

In this study we consider several regions in France: (i) the four NUTS3 regions that make the NUTS2 
region Brittany (Côtes d’Armor, Finistère, Ille-et-Vilaine, Morbihan), which is a plain area in Western 
France; (ii) NUTS3 region Sarthe which is also a plain area in Western France but on the East of Brittany; 
and (iii) NUTS3 region (Puy-de-Dôme) which is a mountainous region in central France. 

3.13.3 Data 

A specific survey was carried out to farmers in Brittany, Sarthe and Puy-de-Dôme (face-to-face or 
online) at the end of 2019 and beginning of 2020. The questionnaire collected economics and struc-
tural information on farms for the year 2018, as well as detailed information on practices (see Tzou-
ramani et al., 2019). The contact details of farmers targeted by the survey were obtained from value 
chain stakeholders, namely processors, farmers’ groups and local government. The sample used here 
consists in 159 farms specialist in dairy farming or beef cattle farming, or mixed dairy-beef cattle. The 
distribution of farms over the NUTS3 regions is as follows: Sarthe (13 farms), Côtes-d’Armor (21), Fin-
istère (18), Ille-et-Vilaine (18), Morbihan (19) and Puy-de-Dôme (70). We report descriptive statistics 
of the sample used in Table 1. 

Farms in the sample operate on average 115 ha of UAA and breed 111 livestock units for dairy and 
beef cattle. These figures are in line with the description of the regions in the previous section. Only 
36% of the UAA is covered by permanent pasture on average. A low part of UAA is owned (34% on 
average), consistent with the low share of individual farms (26%): there are many partnership farms in 
the dairy and beef cattle sector, and the partners own land and rent it out to the partnership farm, 
thus explaining the high part of rented land. By contrast, family labour is still the majority on the farm 
(87% on average), which is in part explained by the need to be close to the animals days and nights. 
Almost one third (32%) of the farms are in high altitude (above 600 m), namely in Puy-de-Dôme, and 
more than one third (37%) are located in less favoured areas (LFA). The latter are areas with natural 
constraints such as mountains, and farmers receive subsidies from the Common Agricultural Policy 
(CAP) when their farm is located in these areas. All CAP operational subsidies (direct, coupled, AES and 
LFA subsidies) are on average 164 Euros per ha of UAA. 
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Table 1: Descriptive statistics of the sample 

Characteristics Unit Mean Coef. of variation  
Age of the farmer years 46.8 0.22 
Experience of the farmer years 23.78 0.47 
Cattle herd size Number of cattle 

livestock units 
111 0.62 

UAA ha 115 0.63 
Share of owned land in UAA % 34 0.88 
Share of permanent grassland in UAA % 36 0.96 
Farm labour Number of weeks 

worked 
114 0.42 

Share of family labour in farm labour % 87 0.23 
Revenue from sales Euros 260,102 0.95 
CAP operational subsidies per ha of UAA Euros per ha 164 0.74 
  Share  
Share of male farmers  87%  
Share of farmers with university education 
(agricultural or not) 

 46%  

Share of individual farms  26%  
Share of farms specialists dairy  68%  
Share of farms with most of the farmland 
at 600 m or over 

 32%  

Share of farms in LFA  37%  
Share of farms in Natura 2000 area  15%  
 

3.13.4 Methodology 

3.13.4.1 Identification of ecological and non-ecological farms 

To identify ecological farms and non-ecological farms, that is to say farms that have adopted environ-
mentally-friendly practices and farms that have not, we created five typologies, based on specific en-
vironmentally-friendly practices. In three typologies we rely on ecological nomenclatures that are well 
known and well accepted: certified organic farming; in conversion to organic farming; engagement in 
an agri-environmental scheme (AES). AES are voluntary five-year contracts between farmers and the 
government, where farmers receive CAP subsidies to implement specific environmentally-friendly 
practices on their farm. In dairy and beef cattle farming it can for example be a lower number of live-
stock units on the farm or reducing the use of fertilisers. 

- Typology 1: Ecological farms are those farms that were certified organic farms in 2018 (47 
farms), while non-ecological farms are those that were not certified (94 farms).  

- Typology 2: Ecological farms are those farms that were in conversion to organic farming in 
2018 (29 farms), while non-ecological farms were not (130 farms). 

- Typology 3: Ecological farms are those farms that were engaged in 2018 in an AES other than 
converting to organic farming (33 farms), while non-ecological farms were not (126 farms). 
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- Typology 4: Ecological farms are those farms that declared in 2018 using antibiotics only for 
treatment (109), while non-ecological farms used antibiotics for treatment and for preven-
tion (46 farms). 

- Typology 5: Ecological farms are those farms that had agroforestry in 2018 (47 farms), while 
non-ecological farms had no agroforestry (32 farms).  

3.13.4.2 Performance indicators 

Three groups of indicators were computed: partial productivity indicators, profitability indicators, and 
market orientation indicator. As shown in Table 2, the partial productivity indicators consist in the 
average product of land (#1) and the average product of labour (#2). The profitability indicators com-
pare revenue to cost. Revenue is either considered only from sales in private revenue-cost-ratios (in-
dicators #3 and #4), or from sales as well as subsidies for public revenue-cost-ratio (indicators #5 to 
#6). The profitability indicators also differ in terms of the costs: either external labour and land only 
(#3 and #5), or external as well as own labour and land (#4 and #6). No other costs are included, due 
to poor quality data. The profitability indicators thus focus on labour and land costs. A final indicator 
proxies the market orientation (#7) and more precisely it describes how much a farm relies on public 
subsidies, compared to private revenues. 

Table 2: Definition of the economic performance indicators computed 

# Indicator Unit Definition 
 Partial productivity   
1 Average product of land Euros per ha Revenue from sales / UAA 
2 Average product of labour Euros per 

worked week 
Revenue from sales / Number of to-
tal weeks worked on the farm 

 Profitability   
3 Private revenue-cost-ratio not consider-

ing remuneration of owned production 
factors 

unitless Revenue from sales / (cost for paid 
labour + cost for paid rent) 

4 Private revenue-cost-ratio considering 
remuneration of owned production fac-
tors 

unitless Revenue from sales / (cost for paid 
labour + cost for paid rent + imputed 
cost for own labour + imputed cost 
for own land) 

5 Public revenue-cost-ratio not considering 
remuneration of owned production fac-
tors 

unitless Revenue from sales and subsidies/ 
(cost for paid labour + cost for paid 
rent) 

6 Public revenue-cost-ratio considering re-
muneration of owned production factors 

unitless Revenue from sales and subsidies/ 
(cost for paid labour + cost for paid 
rent + imputed cost for own labour + 
imputed cost for own land) 

 Market orientation   
7 Reliance on public subsidies unitless Revenue from sale / (Revenue from 

sales + subsidies) 
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3.13.5 Methods to compare economic performance between ecological and non-eco-
logical farms 

We use two methods to compare economic performance indicators presented above between ecolog-
ical and conventional farms: comparison of means with t-tests and propensity score matching analysis. 

The first straightforward method to compare groups of farms is to carry out t-tests of equality of 
means, to assess whether the means of the two groups of farms (ecological and non-ecological) are 
equal (for details, see Snedecor and Cochran, 1989). Specifically, for each performance indicator, we 
test the null hypothesis H0 that the mean of ecological farms is equal to the mean of conventional 
farms, against the alternative hypothesis H1 that the mean of ecological farms is different from the 
mean of conventional farms. A significant p-value would indicate a rejection of the null hypothesis, 
indicating that the means of the two groups are significantly different. Note that we use an adaptation 
of t-test, the Welch t-test, to accommodate situations where the variances of the two groups being 
compared are different (heteroscedasticity). 

One potential problem when comparing farms with t-tests is that we do not compare similar farms. 
The group of ecological farms may be structurally different (e.g. smaller size, younger farmer) and in 
this case a significant difference in performance means may in fact be due to significant differences in 
farm structures. For this reason, we also use propensity score matching to compare performance be-
tween ecological farms and non-ecological farms (Rosenbaum and Rubin, 1983; Caliendo and Kopeinig, 
2008; Stuart, 2010). Our objective is to assess the effect of treatment (i.e. the adoption of environ-
mentally-friendly practices) on performance, specifically the average treatment effect on the treated 
(ATT). This statistic measures the change in performance when a farm became ecological, i.e. adopted 
environmentally-friendly practices. 

Propensity score matching enables to construct a control group by matching each treated farm with a 
non-treated farm of similar characteristics. This is based on the probability to adopt environmentally-
friendly practices, which is estimated on covariates that are selected as follows: (i) they influence the 
decision to adopt environmentally-friendly practices, (ii) but are not modified after adoption has taken 
place. An interesting discussion on covariate selection can be found in VanderWeele (2019).  The co-
variates used to find similar farms in our analysis are: gender of the farmer (binary variable taking the 
value 1 if male, and 0 if female), education of the farmer (categorical variable with levels of primary 
school, middle school, agricultural high school, non-agricultural high school, agricultural university, 
non-agricultural university); age of the farmer (in years), experience of the farmer in farming (in years), 
UAA (in ha), share of owned land in UAA, regional dummies, dummy for localisation in LFA, and dummy 
for localisation in Natura 2000 area. 

Once treated farms have been assigned a non-treated match, the effect of treatment on performance 
is measured with the ATT. On practical aspects, one can note that to estimate the treatment effect and 
its standard error, we fit a linear regression model with each of our performance indicators as the 
outcome, and the treatment and the covariates as additive predictors, and included the full matching 
weights in the estimation. Here the coefficient on the treatment is taken to be the ATT. Finally, a clus-
ter-robust variance is implemented for the inference (see Abadie and Spiess, 2021). 

3.13.6 Results 

Results of the t-tests of equality of means between ecological farms and non-ecological farms (see 
table in the Appendix) consistently indicate that certified organic farms (ecological farms in Typology 
1) and farms in conversion to organic farming (ecological farms in Typology 2) are significantly worse 
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performer than non-ecological farms. This conclusion also holds when ecological farms are defined as 
farms engaged in AES other than organic conversion (Typology 3) but only in terms of output per hec-
tare of land (indicator #1) and profitability ratios when subsidies are included as well as sales (indica-
tors #5 and #6). In this typology 3, ecological and non-ecological farms are not significantly different in 
terms of output per labour (#2) and profitability ratios when only sales are considered in revenue (#3 
and #4). We can also note that in the two other typologies (typology 4 regarding the use of antibiotics 
for treatment only, and typology 5 regarding agroforestry) ecological farms and non-ecological farms 
perform similarly on average, as the performance indicators are not significantly different. An excep-
tion relates to the market orientation: for each typology, ecological farms rely significantly more on 
subsidies since the ratio of sales to sales and subsidies (#7) is lower for ecological farms than for non-
ecological farms (except for typology 5 about agroforestry where the difference is non-significant). 

In summary, comparing ecological farms and non-ecological farms with t-tests of equality of means 
shows that (i) organic farms and farms engaged in AES (for organic conversion or not) are worse per-
forming than other (non-ecological farms), (ii) limiting the use of antibiotics to treatment only or im-
plementing agroforestry has no impact on economic performance, and (iii) ecological farms rely more 
on subsidies than non-ecological farms. 

Moving to the results from propensity score matching (see Table A2 in the appendix), the conclusions 
are different. While certified organic farms (typology 1) and farms converting to organic farming (ty-
pology 2) were shown to be worse performing than non-ecological farms with t-tests (Table A1), the 
difference is non-significant when farms with similar structure are compared: the ATTs for all perfor-
mance indicators are non-significant. This indicates that an organic (certified or in conversion) farm 
does not perform significantly more or less than a non-organic farm that is similar in terms of structure. 
In other words, on average farms that became organic (certified or in conversion) did not lose nor gain 
performance. The same conclusion holds for typology 4 where, on average, farms that adopted the 
practice of using antibiotics for treatment only (instead of treatment and prevention) did not lose nor 
gain performance. 

The story is different for typologies 3 and 5. While some performance indicators did not change when 
a farm became ecological, some decreased significantly (shown by a negative and significant ATT). 
More precisely, when farms adopted AES (other than converting to organic), they experienced a de-
crease in output per hectare (#1) and per labour (#2), and in profitability accounting for external and 
own labour and land (#5 and #6). Similarly, when farms implemented agroforestry, they experienced 
a decrease in output per hectare (#1), and in profitability accounting for external and own labour and 
land when sales and subsidies are considered (#6). 

3.13.7 Conclusion 

We compare the economic performance of farms that apply a higher degree of environmentally-
friendly practices (ecological farms) and farms with a lower implementation of such practices (non-
ecological farms) for a sample of dairy and beef cattle specialist farms in France in 2018, whose data 
were collected through a specific survey. Using t-tests of equality of means and propensity score 
matching, seven economic performance indicators (related to partial productivities, profitability ratios 
and dependence on subsidies) were compared between ecological and non-ecological farms identified 
with five different typologies, depending on the practice considered.  
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Results show that t-tests of equality of means revealed a lower performance of organic (certified or in 
conversion) farms than other (non-ecological) farms, but the difference is not significant when pro-
pensity score matching is used. By contrast, while t-tests showed that implementing agroforestry had 
no impact on economic performance, propensity score matching revealed that it decreased output per 
hectare and profitability ratio (with revenue from sales and subsidies, and costs from external and own 
land and labour). This discrepancy in conclusion clearly shows the importance of taking into account 
the different structure (e.g. size, age) of ecological and non-ecological farms when comparing their 
performance.  

As regard the two other typologies considered here, findings are consistent between t-tests of equality 
of means and propensity score matching: limiting the use of antibiotics to treatment only has no im-
pact on economic performance, while engagement in AES (other than conversion to organic farming) 
decreases output per ha and profitability ratio when revenue includes sales and subsidies. The latter 
finding about AES is in line with the literature showing that implementing on farms practices requested 
from engagement in AES has a cost, and for this reason farmers receive AES subsidies to compensate 
for these costs. However, for our sample it seems that the compensation was not sufficient in 2018. 

The main limit of this study is that variable costs (in particular costs of pesticides, fertilisers, concen-
trate feed, as well as veterinary costs) and fixed costs (e.g. depreciation) were not included in the 
profitability ratios due to low data quality. It can be expected that accounting for these costs may 
disadvantage non-ecological farms which rely more on these inputs than ecological farms, and may 
therefore change some conclusions. Further research could also focus on collecting robust data on 
environmental performance (nitrate pollution, biodiversity…) and social performance (labour force, 
working conditions, etc.…) in order to fully compare ecological and non-ecological farms 
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3.13.9 Appendix 

Table A1: Comparison of economic performance between ecological and non-ecological farms - Results of t-tests of equality of means 
  Typology 1 Typology 2 Typology 3 Typology 4 Typology 5 
  Certified organic farming Conversion to organic 

farming 
Engagement in AES 
other than organic con-
version 

Antibiotics used for treat-
ment only 

Agroforestry 

  Ecol. Non-
ecol. 

Sign. Ecol. Non-
ecol. 

Sign. Ecol. Non-
ecol. 

Sign. Ecol. Non-
ecol. 

Sign. Ecol. Non-
ecol. 

Sign. 

1 Output per ha 1,565 2,731 *** 1,501 2,774 *** 1,787 2,552 *** 2,240 2,878  1,518 1,828  
2 Output per labour unit 1,726 2,745 *** 1,786 2,565 ** 2,086 2,524  2,347 2,713  1,819 1,881  

3 

Private revenue-cost-ratio 
not considering remunera-
tion of owned production 
factors 

6.57 10.78 ** 4.85 11.57 *** 10.39 10.22  9.64 12.82  6.48 5.56  

4 
Private revenue-cost-ratio 
considering remuneration of 
owned production factors 

7.44 13.07 *** 5.83 13.83 *** 12.64 12.66  11.89 15.6  8.6 6.94  

5 
Public revenue-cost-ratio not 
considering remuneration of 
owned production factors 

5.52 9.67 *** 4.95 9.69 *** 6.35 9.53 * 7.91 12.03  6.86 4.94  

6 
Public revenue-cost-ratio 
considering remuneration of 
owned production factors 

7.49 11.74 ** 6.18 11.85 *** 7.57 12.28 ** 10.05 14.73  9.13 6.78  

7 Market orientation 0.71 0.83 *** 0.72 0.83 * 0.72 0.85 *** 0.80 0.88 ** 0.69 0.79  
Notes: ‘Ecol.’ indicates the mean for the group of ecological farms. ‘Non-ecol.’ indicates the mean for the group of non-ecological farms. ‘Sign.’ indicates significance at 10% (*), 5% (**) 
and 1% (***) respectively for the t-test. 
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Table A2: Comparison of economic performance between ecological and non-ecological farms - Results of propensity score matching 

  Typology 1 Typology 2 Typology 3 Typology 4 Typology 5 
  Certified organic farm-

ing 
Conversion to or-
ganic farming 

Engagement in AES 
other than organic 
conversion 

Antibiotics used for 
treatment only 

Agroforestry 

  ATT Sign. ATT Sign. ATT Sign. ATT Sign. ATT Sign. 
1 Output per ha -43  99  -998 *** -55  -832 *** 
2 Output per labour unit -34  304  -631 * -229  -169  

3 
Private revenue-cost-ratio not 
considering remuneration of 
owned production factors 

-2.08  -2.89  0.51  -1.03  -3.87  

4 
Private revenue-cost-ratio con-
sidering remuneration of 
owned production factors 

-2.73  -1.85  1.69  -0.60  -4.08  

5 
Public revenue-cost-ratio not 
considering remuneration of 
owned production factors 

-0.50  0.48  -3.18 ** -1.67  -1.31  

6 
Public revenue-cost-ratio con-
sidering remuneration of 
owned production factors 

-1.13  1.21  -3.39 * -2.03  -2.11 * 

7 Market orientation 0.006  -0.01  -0.11 *** -0.05 ** -0.04  
Note 1: ‘sign.’ indicates significance at 10% (*), 5% (**) and 1% (***) respectively. 

Note 2: the R-squared ranges from 0.1554 to 0.8269 depending on models and typologies. 
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3.14 Technical-economic performance of ecological farm types for matched cattle and 
sheep farms in Scotland (SRUC) 

Bethan Thompson, Andrew Barnes, Luiza Toma 

 

SRUC – Scotland’s Rural College, United Kingdom 

 

3.14.1 Introduction and description of the case-study region 

Scotland has just under 18,000 specialist cattle and sheep farms. Most of these farms are located in 
the west of the country, although there is a concentration of specialist cattle farms in the north east. 
In Scotland 88% of the agricultural land is classified as less favoured areas (LFA) (ScottishGovernment 
2017) with 80% of cattle and sheep farms operating in a LFA (ScottishGovernment 2017). This has 
implications for the viability of these farms and the households that they support (Andrew P. Barnes, 
Thomson, and Ferreira 2020). The financial viability of beef but in particular sheep farms has been of 
concern for the last decade (Thomson 2011). The potential for Brexit-induced price reductions, espe-
cially the removal of income support measures are likely to see an accelerated decline in agricultural 
activity, land abandonment and moves away from agricultural livelihoods (Moxey and Thomson 2018). 
These trends have raised concerns in relation to biodiversity and the maintenance of traditional land-
scapes given 55% of Scotland’s agricultural land is dedicated to upland sheep and mixed sheep and 
cattle farming (NatureScot 2020). The implications of these changes for landscapes and biodiversity 
vary from one sub region to another (Thomson 2011) but overgrazing is generally understood to be an 
issue (Ross et al. 2016). In terms of ecological farming practices on cattle farms, research suggests that 
there has been little change in the intensity of farming practices on cattle Scottish cattle farms over 
recent years (A. P. Barnes and Thomson 2014). One of the major concerns for cattle production are 
greenhouse gas emissions (GHG). A recent modelling study of Scottish beef finishing systems found 
that duration of finishing was negatively correlated to emissions but positively correlated to profitabil-
ity (Kamilaris et al. 2020). This highlighted important trade-offs between profitability and GHG emis-
sions that may need to be made. 

3.14.2 Method 

The LIFT farm typology is used to identify farms that conform with an ideal low-input, integrated or 
ecological type (Rega et al., 2021). The ecological category is defined as farms which are both low input 
and integrated. We present descriptive data on the number of farms in the low-input and / or high-
integration categories with scores derived from analysis of the FADN sample. Since the number of low-
input and / or high- integration farms in Scotland is limited relative to the EU level we recalculated 
quartiles based on the low-input and integrated scores and split our sample according to these quar-
tiles quartiles. We used the bottom two quartiles and top two quartiles to create suitably sized groups 
for further analysis. 

Differences in natural and socio-economic conditions are likely to affect all aspects of farm operation; 
this implies its classification as low-input and / or integrated as well as its efficiency. The underlying 
differences, between our farms can be considered selection bias. In order to reduce this we can iden-
tify a set of farms that are comparable with regard to their natural conditions, geographical region, 
access to inputs and production category (Hansen et al. 2021). In reducing these underlying differences 
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we hope to be able to detect a truer effect of using a low-input or integrated technology on efficiency 
rather than the effect of other differences between our farms. In order to do this we conduct propen-
sity score matching across our farm groupings. We used course exact matching implemented using the 
MatchIt package (Ho et al. 2011). 

We used data envelopment analysis (DEA), which is a non-parametric method of calculating efficiency, 
to assess the technical-economic performance of farms in our sample. DEA does not assume the form 
of the production function or make assumptions about the probability distribution of the data (Cooper, 
Seiford, and Tone 2007). Each farm is benchmarked against the others by solving a series of linear 
programming problems and establishing an efficient frontier. One can assume (or not) that each farm 
is operating at an optimal scale; here we choose to assume that they are not so use variable returns 
to scale (VRS) and the operation only compares inefficient farms to efficient farms of a similar size. We 
also use a non-oriented model which assumes that farms are able to change inputs and outputs at the 
same time. 

We used a slacks-based model (Tone 2001) which considers the sum of all slacks, beyond proportional 
reductions, within the efficiency score. This means it can provide a stronger discrimination between 
efficient and inefficient farms. Since it does not assume that all inputs or outputs must decrease pro-
portionally it is arguably more applicable to real life situations than other DEA models, such as where 
inputs are substitutable (Tone 2015). The approach has been advocated for use in livestock systems 
by previous research (Soteriades et al. 2015). We implemented the analysis using the deaR package 
(Coll-Serrano et al. 2018). 

We applied this model to our sample of cattle and sheep farms but also of subsets of the data by farm 
type and ecological type (low-input, integrated, and ecological). We therefore consider that these eco-
logical types represent different production technologies in addition to being a cattle or sheep farm 
where similar management conditions apply. Due to low numbers of organic farms in the sample, we 
were not able to conduct a separate analysis for organic/non-organic farms. 

We used a Wilcoxon test to see if there were significant differences between the average efficiency 
scores of farm categories or between other productivity indicators. We further conducted a secondary 
tobit regression to examine the effect or other variables on efficiency within the farm-type and sub-
group samples. 

3.14.3 Data 

Data for this analysis came from the EU Farm Accountancy Data Network (FADN) for Scotland between 
2011 and 2015. The FADN data provides accounting data for a sample of professional farms above a 
country specific size threshold from across the EU with a five-year rotating sampling system. We con-
sider cattle and sheep farms for our analysis. These are defined by FADN as farms where at least 66% 
of their gross margin comes from cattle and sheep products respectively. In reality many of the farms 
in our Scottish sample are mixed cattle and sheep, but with an emphasis on one or the other. Our 
sample consists of 1006 observations of 245 distinct farms. This is made up of 630 cattle farm obser-
vations from 165 distinct farms and 376 sheep farm observations from 104 distinct farms. There are 
24 where they were classified as sheep farms in one year but cattle in another or vice versa, empha-
sising the mixed livestock nature of some of the farms in our sample. 
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3.14.3.1 DEA data 

As with the FADN WP1 typology, the data is pooled in order to generate a usable sample size for the 
case study. In order facilitate this any values in euros are deflated with appropriate indices with 2010 
as the base year. The variable definitions and indices used can be found in Table 1. 

Table 1: A table of variables used in the DEA 

Variable FADN Name Units Use Description 

Total output SE131 EUR Output Sales and use of crop and livestock products and livestock plus 
changes in any product stocks / purchases of livestock. 

Total assets mi-
nus land value 

SE436 - AL-
NDAGR_CV EUR Input 

model 

Fixed assets (valuation of land, farm buildings and forest cap-
ital, machinery and equipment and breeding livestock) and 
current assets (non-breeding livestock, stocks of agricultural 
products and other circulating capital) 

Total intermedi-
ate consumption SE275 EUR Input 

model 
Specific costs including inputs produced on the holding and 
overheads arising from production in the accounting year 

Labour SE011 Hours Input 
model 

Total number of hours worked on farm in year paid and un-
paid 

UAA SE025 Hectares Input 
model Land area owend and/or rented by farm 

 

We use total assets (minus land value), total intermediate consumption, labour (hours) and UAA (ha) 
as our inputs and total value of farm output as our output. We chose labour in hours rather than annual 
work units since they have a similar order of magnitude to our other variables. Since we investigate 
livestock farms we considered the fact that many farms in our sample also have common land. Ideally 
we would also like to include the number of grazing days on common land a farm has in a year per 
livestock unit, however not all farms have a common land value and to include this variable with would 
have to provide a dummy since 0 values for inputs cannot be used in DEA. Instead we include this 
variable in our matching criteria and in our secondary regression. 

Prior to analysis the data was cleaned by checking for inconsistent and missing data. During this pro-
cess 28 observations were removed due to incorrect livestock information or missing feed data. Since 
DEA is particularly sensitive to outliers we checked manually for outliers in the DEA variables using 
histograms and box plots. There were outliers from the perspective of individual variables at the top 
end of the sample, however considering multiple variables it appeared these were consistently linked 
to the same large farms. On this basis we did not have good reason to remove any further observations. 

3.14.3.2 Propensity score matching data 

Following Hansen et al. (2021) we account for four dimensions that might contribute to selection bias 
into one of the ecological groups. To account for difference in environmental conditions we include an 
indicator of whether or not the farm is classified as LFA. To account for geographical regions, we in-
clude NUTS2 region. To account for differences in access to inputs we include a variable for grazing 
days on common land. To account for production types, we include the number of livestock units. 

3.14.3.3 Secondary regression data 

The variables available to conduct secondary analysis are limited by the FADN. We include less fa-
voured areas (LFA) status, organic status, percentage land rented, grazing days on common land, low 
input and integrated scores as well as their NUTS2 region. 
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3.14.4 Results 

3.14.4.1 WP1 typology results 

We analysed the results of the WP1 low-input classification on our sample we found that only 2 cattle 
farms and 7 sheep farms were classified as low input (score > 3) using the unweighted low-input score 
and 1 cattle and 14 sheep farms using the weighted scores. When we analysed the results of the WP1 
integrated classification in our sample we found that 7 cattle farms and 67 sheep farms were classified 
as highly integrated. Using the weighted scores resulted we found 8 cattle farms and 79 sheep farms 
were classified as highly integrated. 

These scores indicate that relative to other cattle farms in the FADN sample, Scottish cattle farms are 
high input since a large proportion of scores are between 1 and 2 and very few are above 3. While 
there are not many sheep farms with scores above 3 there a larger proportion have scores between 2 
and 3 indicating that they are relatively low input. In terms of integration, Scottish cattle farms have a 
low degree of integration. We can see the bulk of the farms have scores between 1 and 2.5. Scottish 
sheep farms are more highly integrated, having a large proportion of the sample with scores above 2 
and a proportion with scores above 3. Lastly there are only 34 organic sheep farms and 6 organic cattle 
farms in our sample. 

3.14.4.2 WP1 typology adaptation 

In order to elicit the differences in low-input and integrated farms within our Scottish sample we cal-
culated the quartiles for the scores so that we have relatively even, usable groups for further analysis. 
We decided to proceed using only the weighted scores so all scores reported from here on refer to 
weighted scores. Using these cut off values we split our sample into four similarly sized groups. Since 
we are working with a small sample we collapsed the bottom and top two quantiles to give us a mini-
mum of 295 in each sub sample of cattle farms and a minimum of 163 in each sub sample of sheep 
farms. We are also interested in identifying those farms in our sample that were both low input and 
highly integrated, suggesting that they might be considered as the most ecological. We have 207 cattle 
farms and 136 sheep farms in both the high-integration and low-input categories which we describe 
as the most ecological farms. 

3.14.4.3 Propensity score matching 

Propensity score matching enabled us to identify samples of high and low-input, high and low-integra-
tion and ecological and non-ecological farms that were more similar one another across key variables 
than in our original samples. This process reduces the sample size since some farms could not be 
matched within the defined bounds were removed. 

3.14.4.4 Efficiency results with secondary regression 

3.14.4.4.1 Results by farm type 
We first ran an efficiency analysis on the full samples of cattle farms and sheep farms. The mean effi-
ciency score for the cattle sample was 0.54 and the mean efficiency score for the sheep farm sample 
was 0.57. 

Table 2 shows the results of our second stage regression for cattle and sheep farms. We see that for 
cattle farms now that other factors are included the low-input score in fact has a positive relationship 
with efficiency at the 0.05 level. Being situation in an LFA, or NUTS regions UKM5 or UMM6 compared 
to UKM2 also have a small positive but significant relationship at the 0.05 level with efficiency. The 
percentage of rented land has a small positive relationship with efficiency whereas the percentage of 
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subsidies as a proportion of total revenue (sales + subsidies) has a negative relationship with efficiency. 
Need to consider livestock units. 

Table 2: Regression results for cattle and sheep farms 

 Cattle Sheep 
 Estimate Std. Error p value Estimate Std. Error p value 
(Intercept):1 0.759 0.050 0.000 1.245 0.095 0.000 
(Intercept):2 -1.972 0.037 0.000 -1.691 0.046 0.000 
score_livestock_lu_weighted 0.110 0.024 0.000 0.125 0.044 0.004 
score_livestock_integrated_weighted -0.026 0.020 0.198 -0.190 0.038 0.000 
LFA_YN 0.076 0.034 0.025 -0.118 0.077 0.126 
NUTS2UKM3 0.025 0.036 0.492 -0.060 0.032 0.059 
NUTS2UKM5 0.094 0.037 0.012 0.093 0.104 0.371 
NUTS2UKM6 0.090 0.037 0.016 0.009 0.038 0.804 
grazdays_score_grz_lu -0.003 0.006 0.583 -0.005 0.010 0.643 
lu_tot -0.000 0.000 0.000 -0.000 0.000 0.251 
debt_asset_ratio 0.053 0.061 0.388 -0.020 0.097 0.841 
perc_uaa_rented 0.078 0.020 0.000 0.130 0.029 0.000 
market_orientation_ratio -1.589 0.102 0.000 -0.981 0.134 0.000 
perc_paid_labour 0.009 0.043 0.824 -0.026 0.071 0.710 
organicorganic 0.011 0.060 0.859 0.120 0.044 0.007 

 

We see that for sheep farms both the low-input score and integrated scores have a relationship with 
efficiency score that is significant at the 0.05 level but they go in opposite directions with low-input 
scores having a positive relationship to efficiency, as on cattle farms and the integrated score a nega-
tive relationship. Being an organic farm also has a positive association with efficiency in this model. 
The location of sheep farms, nor their access to common land seem to make a difference to efficiency, 
which is surprising. However, the percentage of subsidies as a proportion of total revenue has a nega-
tive relationship with efficiency and perhaps accounts for much of area related inefficiency. We also 
see that the percentage of land rented has a positive relationship with efficiency as it did in the cattle 
sample. 

3.14.4.4.2 Results by farm type and ecological type efficiency scores 
Table 3 shows the results of our efficiency analysis by farm type and ecological category. A Wilcoxon 
test indicated a difference significant at the 0.05 level between the mean scores of high-integration 
compared to low-integration sheep farms. This stands in contrast to the comparison of scores in the 
unmatched samples where significant differences were detected between the mean scores of the high-
input compared to low-input cattle farms, the most-ecological cattle farms compared to non-ecologi-
cal cattle farms in addition to the high-integration compared to the low-integration sheep farms. This 
suggests that the matching process has removed some of the underlying heterogeneity which was in 
fact driving differences between the cattle farms in the unmatched analysis. 
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Table 3: Mean efficiency scores by farm type and ecological category 

 Mean Effi-
ciency 

p 
value  Mean Effi-

ciency 
p 

value  Mean Effi-
ciency 

p 
value 

low-input 0.591 0.321 high-integra-
tion 0.588 0.091 eco 0.604 0.973 

high-in-
put 0.599 - low-integration 0.609 - non-

eco 0.599 - 

low-input 0.632 0.246 high-integra-
tion 0.601 0.014 eco 0.628 0.596 

high-in-
put 0.659 - low-integration 0.665 - non-

eco 0.645 - 

 

3.14.4.4.3 Results by farm type and ecological additional productivity indicators 
Table 4 shows the mean scores per indicator for a number of important productivity indicators for 
cattle farms. These are calculated using the matched samples. 

Table 4: Productivity indicators for cattle farms by ecological type 

Indicator Low-Input 
Category Mean p 

value 
Integrated 
Category Mean p 

value 
Ecological 
Category Mean p 

value 
equity_ratio low 0.892 0.299 low 0.893 0.791 eco 0.903 0.057 
equity_ratio high 0.885 - low 0.886 0.791 non-eco 0.881 - 
market_orientation_ratio low 0.321 0.000 low 0.322 0.000 eco 0.334 0.000 
market_orientation_ratio high 0.271 - low 0.273 0.000 non-eco 0.278 - 
output_per_capital_ratio low 0.160 0.454 low 0.150 0.108 eco 0.153 0.165 
output_per_capital_ratio high 0.143 - low 0.153 0.108 non-eco 0.150 - 
output_per_intermed_ratio low 1.103 0.214 low 1.109 0.212 eco 1.106 0.307 
output_per_intermed_ratio high 1.078 - low 1.076 0.212 non-eco 1.084 - 
output_per_labour_ratio low 35.392 0.000 low 35.154 0.000 eco 32.935 0.000 
output_per_labour_ratio high 42.064 - low 41.773 0.000 non-eco 41.651 - 
output_per_land_ratio low 850.910 0.000 low 782.775 0.000 eco 697.796 0.000 
output_per_land_ratio high 1,273.480 - low 1,320.724 0.000 non-eco 1,232.244 - 
private_rev_cost_ratioA low 0.838 0.078 low 0.828 0.656 eco 0.836 0.255 
private_rev_cost_ratioA high 0.809 - low 0.814 0.656 non-eco 0.814 - 
private_rev_cost_ratioB low 1.228 0.000 low 1.217 0.000 eco 1.251 0.000 
private_rev_cost_ratioB high 1.105 - low 1.116 0.000 non-eco 1.122 - 
 

Table 5 shows the mean scores per indicator for a number of important productivity indicators for 
sheep farms. These are calculated using the matched samples. 

Table 5: Productivity indicators for cattle farms by ecological type 

Indicator Low-Input 
Category Mean p 

value 
Integrated 
Category Mean p 

value 
Ecological 
Category Mean p 

value 
equity_ratio low 0.897 0.074 low 0.904 0.003 eco 0.907 0.004 
equity_ratio high 0.849 - low 0.850 0.003 non-eco 0.855 - 
market_orientation_ratio low 0.421 0.000 low 0.432 0.000 eco 0.439 0.000 
market_orientation_ratio high 0.331 - low 0.332 0.000 non-eco 0.342 - 
output_per_capital_ratio low 0.155 0.038 low 0.148 0.013 eco 0.148 0.021 
output_per_capital_ratio high 0.179 - low 0.186 0.013 non-eco 0.181 - 
output_per_intermed_ratio low 0.975 0.013 low 0.958 0.001 eco 0.964 0.014 
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Indicator Low-Input 
Category Mean p 

value 
Integrated 
Category Mean p 

value 
Ecological 
Category Mean p 

value 
output_per_intermed_ratio high 1.049 - low 1.055 0.001 non-eco 1.037 - 
output_per_labour_ratio low 26.327 0.000 low 25.906 0.000 eco 25.018 0.000 
output_per_labour_ratio high 35.394 - low 34.303 0.000 non-eco 33.701 - 
output_per_land_ratio low 178.328 0.000 low 152.563 0.000 eco 140.520 0.000 
output_per_land_ratio high 518.229 - low 510.309 0.000 non-eco 467.130 - 
private_rev_cost_ratioA low 0.704 0.002 low 0.684 0.000 eco 0.687 0.000 
private_rev_cost_ratioA high 0.775 - low 0.789 0.000 non-eco 0.772 - 
private_rev_cost_ratioB low 1.216 0.003 low 1.205 0.216 eco 1.223 0.016 
private_rev_cost_ratioB high 1.153 - low 1.177 0.216 non-eco 1.169 - 
 

3.14.4.4.4 Low-input farm regressions 
Table 6 shows the results for the secondary regression of cattle farms. For low-input cattle farms the 
only two variables that have a relationship with efficiency at the 0.05 level and a discernible effect size 
are the percentage of UAA rented and the percentage of subsidies as a proportion of total revenue. 
For high-input cattle farms being in UKM6 was associated with having a higher efficiency score com-
pared to UKM2, we also see that the percentage of subsidies as a proportion of total revenue was 
significant, but the percentage of rented land was not. We should also note that we were not able to 
include organic as a variable in the high-input cattle model since none of the farms in this group were 
classified as organic and we were not able to include LFA as a variable in either the low or high-input 
sheep models because all sheep farms in these matched samples were in an LFA. 

Table 6: Regression results for low-input and high-input cattle farms 
 Low-Input Cattle High-Input Cattle 
 Estimate Std. Error p value Estimate Std. Error p value 
(Intercept):1 1.011 0.173 0.000 0.733 0.111 0.000 
(Intercept):2 -1.939 0.055 0.000 -1.869 0.054 0.000 
score_livestock_lu_weighted 0.057 0.057 0.316 0.055 0.055 0.317 
score_livestock_integrated_weighted -0.051 0.033 0.125 0.008 0.034 0.811 
LFA_YN 0.154 0.088 0.081 0.052 0.065 0.420 
NUTS2UKM3 0.070 0.090 0.436 0.035 0.061 0.572 
NUTS2UKM5 0.136 0.096 0.156 0.114 0.064 0.075 
NUTS2UKM6 0.163 0.093 0.079 0.123 0.063 0.050 
grazdays_score_grz_lu 0.017 0.010 0.102 -0.009 0.010 0.345 
lu_tot -0.001 0.000 0.000 0.000 0.000 0.382 
debt_asset_ratio 0.024 0.091 0.788 0.102 0.116 0.378 
perc_uaa_rented 0.105 0.030 0.000 0.065 0.037 0.082 
market_orientation_ratio -2.125 0.163 0.000 -1.480 0.164 0.000 
perc_paid_labour 0.064 0.066 0.333 0.006 0.068 0.928 
organicorganic 0.030 0.065 0.645 - - - 
 

Table 7 show the results for sheep farms by low/high input type. For low-input sheep farms we found 
that low-input score had a positive relationship with efficiency whereas integration score had a nega-
tive relationship with efficiency. We also see that being in UKM3 was likely to result in a lower effi-
ciency score relative to UKM2 (there were no low-input sheep farms in UKM5) as was a higher share 
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of subsidies in total revenue and a higher percentage of paid labour. A higher percentage of rented 
UAA corresponded with a higher efficiency score as did being an organic farm. 

Table 7: Regression results for low-input and high-input sheep farms 
 Low-Input Sheep High-Input Sheep 
 Estimate Std. Error p value Estimate Std. Error p value 
(Intercept):1 1.804 0.311 0.000 1.362 0.121 0.000 
(Intercept):2 -1.713 0.071 0.000 -1.809 0.072 0.000 
score_livestock_lu_weighted 0.326 0.095 0.001 0.026 0.072 0.723 
score_livestock_integrated_weighted -0.446 0.081 0.000 -0.201 0.051 0.000 
NUTS2UKM3 -0.224 0.056 0.000 0.033 0.043 0.449 
NUTS2UKM6 -0.073 0.058 0.211 0.151 0.058 0.009 
grazdays_score_grz_lu -0.019 0.018 0.288 0.006 0.015 0.682 
lu_tot -0.000 0.000 0.082 0.000 0.000 0.880 
debt_asset_ratio -0.328 0.215 0.126 -0.107 0.115 0.353 
perc_uaa_rented 0.124 0.045 0.005 0.142 0.043 0.001 
market_orientation_ratio -1.024 0.196 0.000 -1.437 0.195 0.000 
perc_paid_labour -0.269 0.097 0.005 0.162 0.111 0.145 
organicorganic 0.176 0.069 0.011 0.209 0.077 0.007 
 

3.14.4.4.5 Integrated farm regressions 
Table 8 shows the results for cattle and Table 9 shows the results for sheep where integrated score is 
included alongside other variables. Here we were not able to include LFA for high-integration cattle 
since all of this sample after matching were in a LFA. For the same reason we were not able to include 
organic as a variable for low-integration as none of these farms were organic. 

Being in UKM6 relative to UKM2 was associated with a higher efficiency score for high-integration 
cattle but not low-integration cattle where being in UKM5 was associated with a positive relationship 
to efficiency. For low-integration cattle the percentage of rented land had a positive association with 
efficiency but no relationship was detected that was significant at the 0.05 level for high-integration 
cattle farms. Having a higher share of subsidies in total revenue was negatively associated with effi-
ciency for high and low-integration cattle farms. 

Table 8: Regression results for high and low integration cattle farms 
 High Integration Cattle Low Integration Cattle 
 Estimate Std. Error p value Estimate Std. Error p value 
(Intercept):1 1.119 0.202 0.000 0.667 0.118 0.000 
(Intercept):2 -1.902 0.062 0.000 -1.846 0.051 0.000 
score_livestock_lu_weighted 0.005 0.047 0.907 0.114 0.038 0.003 
score_livestock_integrated_weighted -0.042 0.059 0.476 -0.065 0.038 0.085 
LFA_YN - - - 0.100 0.087 0.253 
NUTS2UKM3 0.186 0.126 0.140 0.019 0.058 0.739 
NUTS2UKM5 0.184 0.128 0.152 0.179 0.062 0.004 
NUTS2UKM6 0.277 0.125 0.027 0.106 0.060 0.078 
grazdays_score_grz_lu 0.024 0.013 0.063 0.001 0.009 0.943 
lu_tot -0.000 0.000 0.021 0.000 0.000 0.782 
debt_asset_ratio 0.226 0.152 0.137 0.033 0.088 0.708 
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 High Integration Cattle Low Integration Cattle 
 Estimate Std. Error p value Estimate Std. Error p value 
perc_uaa_rented 0.061 0.039 0.114 0.102 0.031 0.001 
market_orientation_ratio -2.157 0.183 0.000 -1.382 0.157 0.000 
perc_paid_labour -0.015 0.088 0.862 0.072 0.063 0.252 
organicorganic 0.070 0.086 0.418 - - - 
 

Table 9: Results for high and low integration sheep farms 
 High Integration Sheep Low Integration Sheep 
 Estimate Std. Error p value Estimate Std. Error p value 
(Intercept):1 2.161 0.479 0.000 1.205 0.106 0.000 
(Intercept):2 -1.572 0.082 0.000 -1.755 0.067 0.000 
score_livestock_lu_weighted 0.223 0.094 0.017 0.201 0.057 0.000 
score_livestock_integrated_weighted -0.448 0.148 0.002 -0.278 0.053 0.000 
NUTS2UKM3 -0.178 0.082 0.030 -0.036 0.043 0.399 
NUTS2UKM6 -0.042 0.078 0.593 0.068 0.058 0.238 
grazdays_score_grz_lu -0.039 0.021 0.058 0.005 0.016 0.747 
lu_tot -0.000 0.000 0.444 -0.000 0.000 0.082 
debt_asset_ratio -0.236 0.266 0.374 -0.070 0.129 0.591 
perc_uaa_rented 0.122 0.059 0.038 0.225 0.040 0.000 
market_orientation_ratio -1.320 0.246 0.000 -1.117 0.190 0.000 
perc_paid_labour -0.064 0.120 0.597 0.050 0.109 0.649 
organicorganic 0.159 0.078 0.042 0.370 0.104 0.000 
 

For sheep farms we see a positive relationship between the integration score and efficiency for both 
the low and high integration sample. In contrast we see a negative relationship between efficiency and 
the integration score. We see the same relationship between rented UAA and the percentage of sub-
sidies in revenue here as we have previously with a positive relationship for share of rented land and 
negative for subsidies. Lastly, we see a positive relationship between being an organic farm and being 
more efficient. 

3.14.4.4.6 Ecological farm regressions 
Table 10 shows the results for cattle and Table 11 shows the regression results. We see that for eco-
logical cattle farms only the percentage of rented UAA and percentage of subsidies in revenue have a 
significant relationship with efficiency score at the 0.05 level. In the non-ecological group we see a very 
weak positive relationship between efficiency and low-input score. We also see a positive effect of 
being in UKM5 or UKM6 relative to UKM2. We also see the same positive and negative relationships 
between percentage off UAA rented and percentage of subsidies in revenue as we did in the ecological 
group. 

Table 10: Regression results for eco and non-eco cattle farms 

 Eco Cattle Non-Eco Cattle 
 Estimate Std. Error p value Estimate Std. Error p value 
(Intercept):1 1.207 0.239 0.000 0.784 0.083 0.000 
(Intercept):2 -1.995 0.070 0.000 -1.836 0.047 0.000 
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 Eco Cattle Non-Eco Cattle 
 Estimate Std. Error p value Estimate Std. Error p value 
score_livestock_lu_weighted 0.016 0.071 0.823 0.091 0.037 0.014 
score_livestock_integrated_weighted -0.058 0.058 0.321 -0.016 0.031 0.618 
NUTS2UKM3 0.167 0.120 0.164 0.030 0.058 0.611 
NUTS2UKM5 0.186 0.125 0.136 0.128 0.061 0.036 
NUTS2UKM6 0.229 0.122 0.060 0.130 0.059 0.028 
grazdays_score_grz_lu 0.017 0.014 0.229 -0.001 0.009 0.934 
lu_tot -0.001 0.000 0.000 0.000 0.000 0.644 
debt_asset_ratio 0.150 0.167 0.370 0.079 0.083 0.342 
perc_uaa_rented 0.089 0.042 0.034 0.069 0.029 0.018 
market_orientation_ratio -2.054 0.181 0.000 -1.563 0.149 0.000 
perc_paid_labour 0.031 0.088 0.724 0.027 0.059 0.654 
organicorganic 0.078 0.073 0.284 0.126 0.171 0.460 
 

Table 91: Regression results for eco and non-eco sheep farms 
 Eco Sheep Non-Eco Sheep 

 Estimate Std. Error p value Estimate Std. Error p value 
(Intercept):1 1.983 0.556 0.000 1.160 0.112 0.000 
(Intercept):2 -1.648 0.087 0.000 -1.689 0.064 0.000 
score_livestock_lu_weighted 0.289 0.118 0.015 0.197 0.059 0.001 
score_livestock_integrated_weighted -0.502 0.148 0.001 -0.236 0.052 0.000 
NUTS2UKM3 -0.243 0.080 0.002 -0.026 0.045 0.559 
NUTS2UKM6 -0.054 0.078 0.493 0.064 0.059 0.277 
grazdays_score_grz_lu 0.016 0.022 0.453 -0.006 0.016 0.725 
lu_tot -0.000 0.000 0.131 -0.000 0.000 0.154 
debt_asset_ratio -0.512 0.274 0.062 -0.097 0.131 0.460 
perc_uaa_rented 0.040 0.062 0.516 0.236 0.041 0.000 
market_orientation_ratio -0.803 0.245 0.001 -1.210 0.193 0.000 
perc_paid_labour -0.209 0.121 0.083 0.045 0.106 0.667 
organicorganic 0.251 0.083 0.002 0.295 0.094 0.002 

 

For sheep farms we see a positive relationship between low-input score and efficiency and a negative 
relationship between integration score and efficiency in both the ecological and non-ecological groups. 
Being in UKM3 is negatively associated with efficiency relative to being in UKM2 (no farms in UKM5 
were included in either of these samples) and this was significant at the 0.05 level for the ecological 
group. A higher percentage of rented land was associated with efficient which was significant at the 
0.05 level for the non-ecological group. The percentage of subsidies in total revenue was negatively 
associated with efficiency in both groups as it has been in all of our results. 

3.14.5 Discussion 

We found that mean efficiency score for all of the sub samples was significantly higher than the mean 
efficiency score for the whole cattle and sheep farm samples but only between the high-integration 
and low-integration sheep farms did we find a significant difference between the mean efficiency 
scores of the matched samples. We could therefore argue that there was not a discernible difference 
in the technology used between low and high input cattle or sheep farms to warrant different models. 
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There is a stronger argument for different models based on the integration scores, particularly for 
sheep farms. The technology difference is arguably one of extensity of grazing and forage. 

We found that for cattle farms, a higher low-input was positively and significantly associated with ef-
ficiency in the whole cattle sample and across all our sub groups except for the highly integrated group 
where no effect was detected. This makes sense since the low-input score was calculated on the basis 
of a weighted mean of inputs per livestock unit or hectare of land. It seems that farms which have a 
lower ratio of one sort of input to another also tend to have a lower ratio of inputs to outputs. No 
significant effect was detected for the integration score though the coefficient direction was always 
negative. Across sheep farms we detected a positive relationship between low-input score and effi-
ciency in all but the high-input sheep group. We also found that there was a negative and significant 
relationship between efficiency and integration score in the whole sheep sample and across all of the 
sub groups. These findings are generally supportive of previous research on the relationship between 
efficiency and GHG emissions on Scottish dairy farms which found that farms which are more techni-
cally efficient and bigger or have higher yields are also more efficient in their emissions of GHGs 
(Shortall and Barnes 2013) and modelling of beef finishing systems (Kamilaris et al. 2020). While the 
low-input score does indicate the intensity of the operation and incorporates many categories of emis-
sions (fuel, electricity, fertiliser and feed). The integration score on the other hand can be seen as a 
measure of extensity, identifying farms that have a higher proportion of forage in their diet and lower 
stocking density arguably contributing to ecosystem services (Battaglini et al. 2014). 

The proportion of rented land is often included in studies on the adoption of farm management prac-
tices as well as efficiency (Baumgart-Getz, Prokopy, and Floress 2012)). The results are mixed with 
some finding that land is associated with lower efficiency in livestock farms (Latruffe * et al. 2004; 
Latruffe, Davidova, and Balcombe 2008) which follows the evidence found for adopting some environ-
mental practices which is that where land is not owned investing in long-term changes to it is not 
desirable. On the other hand evidence has also been found for a positive relationship between rented 
land and efficiency (Latruffe et al. 2017) suggesting that the need to pay rent ensures the resource is 
more efficiently. Our findings provide some support to this latter view as we find a positive and signif-
icant relationship between rented land and efficiency across the majority of our models. 

Previous research on dairy and other livestock farms has indicated that farms with a higher debt to 
asset ratio are likely to be less efficient (Davidova and Latruffe 2007; Ma, Renwick, and Zhou 2020) 
though not necessarily less productive or profitable (Ma, Renwick, and Zhou 2020). This provides some 
support agency theory: borrowers with higher debt incur higher costs which reduce the efficiency and 
profitability of the farm. We do not find any evidence to support this in our models. 

A large proportion livestock farms in Scotland are situated in LFAs. Subsidies are available to these 
farms to compensate for farming on potentially less productive land, although the subsidies must be 
applied for. Some research has indicated that receiving these subsidies make no significant difference 
to farm efficiency (Baráth, Fertő, and Bojnec 2020). However, other evidence suggests that farms ex-
posed to environmental constraints are less efficient (Manevska-Tasevska, Rabinowicz, and Surry 
2016) so we use a binary indicator for LFA status and not just whether they receive a subsidy. We have 
not also included NUTS region as a variable since there is a significant overlap in these variables, for 
example all farms in UKM6 Highland and Island are in LFAs. Due to the high number of farms in LFA in 
our sample, after matching we were not always able to compare LFA status directly. In our full cattle 
and sheep samples we found that LFA has a significant positive associate with efficiency and no signif-
icant effect respectively. 
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Debates about the relationship of organic farming and efficiency are ongoing. Early evidence from Eu-
rope indicated that organic farms were less efficient, however evidence from the United States sug-
gested that when self-selection into organic farming was controlled for, and organic technology is as-
sumed to be distinct then there is little evidence that organic farms are less efficient than conventional 
farms (Mayen, Balagtas, and Alexander 2010). More recently organic farms in Norway have been found 
to be more revenue efficient than comparable farms at least when subsidies are counted in the output 
(Hansen, Haga, and Lindblad 2021). While ideally we would also calculate technical efficiency for or-
ganic farms as we have for low-input and integrated farms we instead include it here following (Ma-
nevska-Tasevska, Rabinowicz, and Surry 2016). As with LFA we were not able to include the indicator 
for organic farming in all of our sub models. However, we found a significant positive relationship be-
tween organic farming efficiency in our full sheep sample model but no detectable effect in our full 
cattle sample model and a positive significant relationship to efficiency where it was able to be in-
cluded in the sub sample models. 

Our strongest finding in the secondary regression was the significant negative relationship between 
subsidies as a proportion of total revenue across all of our modelled groups. It could be argued that 
subsidies should be taken into account in the efficiency analysis itself as a form of compensated effi-
ciency (Manevska-Tasevska, Rabinowicz, and Surry 2016) since farmers consider how to generate rev-
enue from subsidies as well as from the market. Others have included the ratio of subsidy to land 
(Latruffe et al. 2017) which also resulted in a negative relationship between a higher ratio and effi-
ciency in the UK while there was a positive or no detectable effect in other countries. 

The development of low-input livestock farms could be beneficial from an economic and narrow envi-
ronmental perspective. Lower input farms appear to be more efficient and given their low-input nature 
are also likely to have lower GHG emissions. The benefits of the development of integrated livestock 
farms is less clear. More highly integrated farms were found to be less efficient. Organic farms were 
associated with high levels of efficiency even in the highly-integrated sample so at least relatively the 
organic price premium, or links to organic associations helped to improve efficiency. The environmen-
tal benefits of extensive farming systems are also strongly debated with trade-offs between the emis-
sions intensity of the products they produce versus the generation of other positive ecosystem services 
which are often hard to quantify (Hodge 2000). For policy makers, providing support for integrated 
farming is difficult to justify on environmental grounds and for farmers it is not an appealing option in 
Scotland without support. 
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4 Empirical analyses of technical-economic and environmental farm 
performance 

4.1 Pesticide efficiency of French wheat producers under a stochastic frontier frame-
work (INRAE) 
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4.1.1 Introduction 

In a recent article, Lechenet, et al. (2017), based on a sample of French crop farms, argue for a potential 
reduction in pesticide use between 37% and 60% depending on the type of pesticides (herbicide, fun-
gicide, insecticide), and this without impeding farms profitability. The results of this article are seriously 
challenged by Frisvold (2019) in his extensive survey, which summarizes several decades of agricultural 
economic research related to the issues that must be considered when dealing with 'farmers' pesti-
cides use decisions. It appears that in primal approaches considering pesticides as damage control in-
puts, many aspects matter, among which the specification of crop production functions and the treat-
ment of the endogeneity of input levels in the estimation of these functions. If the literature related 
to the specification of crop production functions has flourished since the seminal article of Lichtenberg 
and Zilberman (1986), the endogeneity of pesticide levels has barely been addressed in the perfor-
mance benchmarking literature. For instance, Karagiannis and Tzouvelekas (2012), using a stochastic 
frontier framework (SFA), decompose total factor productivity (TFP) using a damage control specifica-
tion, ignoring the potential endogeneity of pesticides. Clearly, this omission might produce biased es-
timation results. Besides, in the SFA literature, applications have focused on output efficiency and not 
input-specific efficiency.  

Our contribution in this article is to develop an input-specific efficiency measure using SFA, and to 
overcome the potential endogeneity issue by relying on a dual approach. Following the framework 
developed in Chambers and Lichtenberg (1994), we can derive pesticide demand and then adjust this 
function to account for inefficiency. The obtained model is estimated, using a maximum likelihood 
approach, on a large sample of about 2,000 French wheat producers over the period 1998 to 2014. 
Our results reveal a potential reduction of pesticides by about 15%, which is much lower than the 
figures reported in the study by Lechenet, et al. (2017). We also find crop diversification to positively 
impact damage abatement only for low levels of pesticide use.  
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4.1.2 Description of the case study region 

As shown in Figure 1, the farms we consider in this study are located in the northeast of France. Most 
of them (83%) belong to département19 of Marne, the other farms being located in adjacent départe-
ments, namely Aisne (02), Ardennes (08), Aude (10), Haute-Marne (52) and Seine-et-Marne (77).  

 
Figure 1: Case study area 

This region, located in part in chalky champagne, is characterised by silty soils and calcareous soils, 
both of which have good agronomic properties. This makes it a very productive region for crops and 
allows farms to have relatively diversified cropping systems. Therefore, if cereals and oilseeds, wheat 
especially, are the main crops in the area and account for a substantial share of farm acreages, many 
farms (about 89% in our sample) also produce sugar beet a very profitable crop, as well as potatoes. 
Alfalfa is also cultivated in the region because of the presence of a downstream (dehydration) industry. 

Therefore, our case study area farms are essentially large specialised crop farms with relatively inten-
sive production practices allowing them to achieve the high potential yields offered by the soil condi-
tions of the region. 

4.1.3 Method 

We develop an input-specific efficiency measure using a stochastic frontier analysis (SFA) approach to 
evaluate crop farmers' (in)efficiency in their uses of pesticides. To overcome potential issues related 
to the endogeneity of inputs levels in the estimation of production functions (see Frisvold, (2019) for 
an extensive survey of the problems that must be considered when dealing with farmers' pesticides 
use decisions), we rely on a dual approach. We start from a production function, where pesticides are 
represented as damage control input and assume profit maximisation behaviour. Following the frame-
work developed in Chambers and Lichtenberg (1994), we derive a pesticides demand function and 
adapt this function to account for inefficiency. The obtained model is then estimated using a maximum 
likelihood approach.  

4.1.3.1 Theoretical framework 

We start with a crop production function defined as 

 𝑦𝑦𝑖𝑖𝑖𝑖 = 𝑔𝑔𝑖𝑖𝑖𝑖𝑃𝑃(𝐱𝐱𝑖𝑖𝑖𝑖) .(1) 

                                                           
19 A département is a French territorial division.  
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where 𝑦𝑦𝑖𝑖𝑖𝑖  is the yield of the considered crop for farmer 𝐹𝐹 in year 𝑡𝑡 , 𝐱𝐱𝑖𝑖𝑖𝑖 is a vector of productive inputs 
and 𝑔𝑔𝑖𝑖𝑖𝑖 is the level of damage abatement provided by a single damage control input 𝑧𝑧𝑖𝑖𝑖𝑖 (pesticides in 
our case study). 

In the presence of inefficiency in pesticides use, we can formulate the damage control function as 

 𝑔𝑔𝑖𝑖𝑖𝑖 ≤ 𝐺𝐺(𝑧𝑧𝑖𝑖𝑖𝑖) (2) 

For computation purpose, we use an additive parametrisation of the inefficiency as follows: 

 
𝑔𝑔𝑖𝑖𝑖𝑖 = 𝐺𝐺(𝑧𝑧𝑖𝑖𝑖𝑖 − 𝜂𝜂𝑖𝑖𝑖𝑖) 

𝜂𝜂𝑖𝑖𝑖𝑖 ≥ 0 
(3) 

In (3) 𝜂𝜂𝑖𝑖𝑖𝑖 ≥ 0 is the damage-control-input-oriented technical inefficiency, and it captures the volume 
of pesticides that is overused in producing the damage abatement level 𝑔𝑔 = 𝑔𝑔𝑖𝑖𝑖𝑖. In other words, even 
if a producer uses a level 𝑧𝑧𝑖𝑖𝑖𝑖 of pesticides, it is worth 𝑧𝑧𝑖𝑖𝑖𝑖 − 𝜂𝜂𝑖𝑖𝑖𝑖. An implicit assumption of our formali-
sation is that the abatement function 𝑔𝑔𝑖𝑖𝑖𝑖 is increasing in 𝑧𝑧𝑖𝑖𝑖𝑖. Moreover, following the damage control 
literature, the level of damage abatement (𝑔𝑔𝑖𝑖𝑖𝑖) is defined such that 𝑔𝑔𝑖𝑖𝑖𝑖  ∈ (0,1) (Babcock, et al., 1992; 
Carrasco-Tauber and Moffitt, 1992; Lichtenberg and Zilberman, 1986). 

Now, let us assume a profit-maximising producer: 

 
𝜋𝜋(𝑝𝑝𝑖𝑖𝑖𝑖 ,𝐰𝐰𝑖𝑖𝑖𝑖 ,  𝑣𝑣𝑖𝑖𝑖𝑖) = max

𝑦𝑦,𝒙𝒙,𝑧𝑧
𝑝𝑝𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖 − 𝐰𝐰𝑖𝑖𝑖𝑖

′𝐱𝐱𝑖𝑖𝑖𝑖 −  𝑣𝑣𝑖𝑖𝑖𝑖𝑧𝑧𝑖𝑖𝑖𝑖 

𝑠𝑠. 𝑡𝑡.      𝑦𝑦𝑖𝑖𝑖𝑖 = 𝐺𝐺(𝑧𝑧𝑖𝑖𝑖𝑖 − 𝜂𝜂𝑖𝑖𝑖𝑖)𝑃𝑃(𝐱𝐱𝑖𝑖𝑖𝑖) 
(4) 

As underlined in Chambers and Lichtenberg (1994), in a dual representation of pesticide technology, 
the first step is to characterize the cost of the abatement function, which can be defined as 

 𝑠𝑠( 𝑣𝑣𝑖𝑖𝑖𝑖 ,𝑔𝑔𝑖𝑖𝑖𝑖) = min
𝑧𝑧

 𝑣𝑣𝑖𝑖𝑖𝑖𝑧𝑧𝑖𝑖𝑖𝑖   𝑠𝑠. 𝑡𝑡.𝐺𝐺(𝑧𝑧𝑖𝑖𝑖𝑖 − 𝜂𝜂𝑖𝑖𝑖𝑖) = 𝑔𝑔𝑖𝑖𝑖𝑖 (5) 

𝑠𝑠(𝑣𝑣,𝑔𝑔) possesses the properties of a traditional cost function.  

Going back to (4), the profit maximisation program can equivalently be transformed as: 

 

𝜋𝜋(𝑝𝑝𝑖𝑖𝑖𝑖 ,𝐰𝐰𝑖𝑖𝑖𝑖 ,  𝑣𝑣𝑖𝑖𝑖𝑖) = max
𝐱𝐱,𝑧𝑧

{𝑝𝑝𝑖𝑖𝑖𝑖𝐺𝐺(𝑧𝑧𝑖𝑖𝑖𝑖 − 𝜂𝜂𝑖𝑖𝑖𝑖)𝑃𝑃(𝐱𝐱𝑖𝑖𝑖𝑖) −𝐰𝐰𝑖𝑖𝑖𝑖′𝐱𝐱𝑖𝑖𝑖𝑖 −  𝑣𝑣𝑖𝑖𝑖𝑖𝑧𝑧𝑖𝑖𝑖𝑖} 

𝜋𝜋(𝑝𝑝𝑖𝑖𝑖𝑖 ,𝐰𝐰𝑖𝑖𝑖𝑖 ,  𝑣𝑣𝑖𝑖𝑖𝑖) = max
𝒙𝒙,𝑔𝑔

�𝑝𝑝𝑖𝑖𝑖𝑖  𝑔𝑔𝑖𝑖𝑖𝑖𝑃𝑃(𝐱𝐱𝑖𝑖𝑖𝑖) −𝐰𝐰𝑖𝑖𝑖𝑖′𝐱𝐱𝑖𝑖𝑖𝑖 − �min
𝑧𝑧

 𝑣𝑣𝑖𝑖𝑖𝑖𝑧𝑧𝑖𝑖𝑖𝑖 ∶  𝐺𝐺(𝑧𝑧𝑖𝑖𝑖𝑖 − 𝜂𝜂𝑖𝑖𝑖𝑖) ≥  𝑔𝑔𝑖𝑖𝑖𝑖�� 

𝜋𝜋(𝑝𝑝𝑖𝑖𝑖𝑖 ,𝐰𝐰𝑖𝑖𝑖𝑖 ,  𝑣𝑣𝑖𝑖𝑖𝑖) = max
𝐱𝐱,𝑔𝑔

{𝑝𝑝𝑖𝑖𝑖𝑖  𝑔𝑔𝑖𝑖𝑖𝑖𝑃𝑃(𝐱𝐱𝑖𝑖𝑖𝑖) −𝐰𝐰𝑖𝑖𝑖𝑖′𝐱𝐱𝑖𝑖𝑖𝑖 − 𝑠𝑠( 𝑣𝑣𝑖𝑖𝑖𝑖 ,𝑔𝑔𝑖𝑖𝑖𝑖)} 

𝜋𝜋(𝑝𝑝𝑖𝑖𝑖𝑖 ,𝐰𝐰𝑖𝑖𝑖𝑖 ,  𝑣𝑣𝑖𝑖𝑖𝑖) = max
𝑔𝑔

�max
𝐱𝐱

[𝑝𝑝𝑖𝑖𝑖𝑖  𝑔𝑔𝑖𝑖𝑖𝑖𝑃𝑃(𝐱𝐱𝑖𝑖𝑖𝑖) −𝐰𝐰𝑖𝑖𝑖𝑖′𝐱𝐱𝑖𝑖𝑖𝑖] − 𝑠𝑠( 𝑣𝑣𝑖𝑖𝑖𝑖 ,𝑔𝑔𝑖𝑖𝑖𝑖)� 

𝜋𝜋(𝑝𝑝𝑖𝑖𝑖𝑖 ,𝐰𝐰𝑖𝑖𝑖𝑖 ,  𝑣𝑣𝑖𝑖𝑖𝑖) = max
𝑔𝑔

{𝑅𝑅(𝑝𝑝𝑖𝑖𝑖𝑖 ,𝐰𝐰𝑖𝑖𝑖𝑖 ,𝑔𝑔𝑖𝑖𝑖𝑖) − 𝑠𝑠( 𝑣𝑣𝑖𝑖𝑖𝑖 ,𝑔𝑔𝑖𝑖𝑖𝑖)} 

(6) 

Where 𝑅𝑅(𝑝𝑝𝑖𝑖𝑖𝑖 ,𝐰𝐰𝑖𝑖𝑖𝑖 ,𝑔𝑔𝑖𝑖𝑖𝑖) is a restricted short-run profit function (Chambers and Lichtenberg, 1994). Solv-
ing the last line of (8) yields 

 𝑅𝑅𝑔𝑔(𝑝𝑝𝑖𝑖𝑖𝑖 ,𝐰𝐰𝑖𝑖𝑖𝑖 ,𝑔𝑔𝑖𝑖𝑖𝑖) = 𝑠𝑠𝑔𝑔( 𝑣𝑣𝑖𝑖𝑖𝑖 ,𝑔𝑔𝑖𝑖𝑖𝑖) (7) 

where 𝑅𝑅𝑔𝑔 and 𝑠𝑠𝑔𝑔 respectively denote the first order derivative of 𝑅𝑅 and 𝑠𝑠 with respect to 𝑔𝑔.  This im-
plies that the optimal level of abatement, 𝑔𝑔𝑖𝑖𝑖𝑖, is a function of input and output prices: 𝑔𝑔𝑖𝑖𝑖𝑖 =
𝑔𝑔(𝑝𝑝𝑖𝑖𝑖𝑖 ,𝐰𝐰𝑖𝑖𝑖𝑖 ,  𝑣𝑣𝑖𝑖𝑖𝑖).  
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4.1.3.2 Econometric specification 

As pointed out in Chambers and Lichtenberg (1994), observations on 𝑔𝑔 are unavailable and one has to 

specify a parametric representation for 𝐺𝐺(𝑧𝑧𝑖𝑖𝑖𝑖 − 𝜂𝜂𝑖𝑖𝑖𝑖). The identification strategy we adopt here pro-

ceeds as follows.  

First, we define a specification for 𝐺𝐺(𝑧𝑧 − 𝜂𝜂). Following Lichtenberg and Zilberman (1986), we consider 
the exponential and the logistic specifications, where a diversification index (𝑇𝑇𝑖𝑖𝑖𝑖) is introduced as a 
factor affecting the damage control function.  

In the case of the exponential specification, we have 

 𝐺𝐺(𝑧𝑧𝑖𝑖𝑖𝑖 − 𝜂𝜂𝑖𝑖𝑖𝑖 ,𝑇𝑇𝑖𝑖𝑖𝑖) = 1 − exp[𝛼𝛼𝑖𝑖 − 𝜆𝜆(𝑧𝑧𝑖𝑖𝑖𝑖 − 𝜂𝜂𝑖𝑖𝑖𝑖) + 𝑏𝑏1 𝑇𝑇𝑖𝑖𝑖𝑖 + 𝑏𝑏2 𝑇𝑇𝑖𝑖𝑖𝑖(𝑧𝑧𝑖𝑖𝑖𝑖 − 𝜂𝜂𝑖𝑖𝑖𝑖)] (8) 

and in the case of the logistic specification, the abatement function takes the form: 

 𝐺𝐺(𝑧𝑧𝑖𝑖𝑖𝑖 − 𝜂𝜂𝑖𝑖𝑖𝑖 ,𝑇𝑇𝑖𝑖𝑖𝑖) =
1

1 + exp[𝜃𝜃𝑖𝑖 − 𝛾𝛾(𝑧𝑧𝑖𝑖𝑖𝑖 − 𝜂𝜂𝑖𝑖𝑖𝑖) + 𝑠𝑠1𝑇𝑇𝑖𝑖𝑖𝑖 + 𝑠𝑠2𝑇𝑇𝑖𝑖𝑖𝑖(𝑧𝑧𝑖𝑖𝑖𝑖 − 𝜂𝜂𝑖𝑖𝑖𝑖)] (9) 

The 𝛼𝛼 and 𝜃𝜃 parameters are assumed to vary from year to year to capture yearly exogenous factors 
like climate and weather events that may have an impact on crop damages. 

Solving for the level of pesticides yields 

 𝑧𝑧𝑖𝑖𝑖𝑖 =
𝛼𝛼𝑖𝑖 + 𝑏𝑏1𝑇𝑇𝑖𝑖𝑖𝑖 + ln[𝑝𝑝𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖(𝜆𝜆 − 𝑏𝑏2𝑇𝑇𝑖𝑖𝑖𝑖) +  𝑣𝑣𝑖𝑖𝑖𝑖] − ln  𝑣𝑣𝑖𝑖𝑖𝑖

𝜆𝜆 − 𝑏𝑏2𝑇𝑇𝑖𝑖𝑖𝑖
+ 𝜂𝜂𝑖𝑖𝑖𝑖 (10) 

for the exponential specification, and 

 𝑧𝑧𝑖𝑖𝑖𝑖 =
𝜃𝜃𝑖𝑖 + 𝑠𝑠1𝑇𝑇𝑖𝑖𝑖𝑖 + ln[𝑝𝑝𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖(𝛾𝛾 − 𝑠𝑠2𝑇𝑇𝑖𝑖𝑖𝑖)−  𝑣𝑣𝑖𝑖𝑖𝑖] − ln  𝑣𝑣𝑖𝑖𝑖𝑖

𝛾𝛾 − 𝑠𝑠2𝑇𝑇𝑖𝑖𝑖𝑖
+ 𝜂𝜂𝑖𝑖𝑖𝑖 (11) 

in the case of the logistic specification. 

In both (10) and (11) pesticide demand equations, 𝑝𝑝𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖 = 𝑅𝑅𝑖𝑖𝑖𝑖   is the revenue associated with the 
production of output 𝑦𝑦𝑖𝑖𝑖𝑖. To overcome potential endogeneity issues related to the existence of unob-
served factors affecting both the use of input 𝑧𝑧𝑖𝑖𝑖𝑖 and the production of output 𝑦𝑦𝑖𝑖𝑖𝑖, 𝑅𝑅 can be approxi-
mated, using a flexible functional form which is a function of production inputs and output prices. In 
our case, we choose the Translog specification to make sure that the prediction of 𝑅𝑅 is always positive. 

Equations (10) and (11) are estimated as: 

 
𝑧𝑧𝑖𝑖𝑖𝑖 =

𝛼𝛼𝑖𝑖 + 𝑏𝑏1𝑇𝑇𝑖𝑖𝑖𝑖 + ln�𝑅𝑅𝚤𝚤𝑖𝑖� (𝜆𝜆 − 𝑏𝑏2𝑇𝑇𝑖𝑖𝑖𝑖) +  𝑣𝑣𝑖𝑖𝑖𝑖� − ln  𝑣𝑣𝑖𝑖𝑖𝑖
𝜆𝜆 − 𝑏𝑏2𝑇𝑇𝑖𝑖𝑖𝑖

+ 𝜂𝜂𝑖𝑖𝑖𝑖 + 𝜔𝜔𝑖𝑖𝑖𝑖 

𝑧𝑧𝑖𝑖𝑖𝑖 =
𝜃𝜃𝑖𝑖 + 𝑠𝑠1𝑇𝑇𝑖𝑖𝑖𝑖 + ln�𝑅𝑅𝚤𝚤𝑖𝑖� (𝛾𝛾 − 𝑠𝑠2𝑇𝑇𝑖𝑖𝑖𝑖)−  𝑣𝑣𝑖𝑖𝑖𝑖� − ln  𝑣𝑣𝑖𝑖𝑖𝑖

𝛾𝛾 − 𝑠𝑠2𝑇𝑇𝑖𝑖𝑖𝑖
+ 𝜂𝜂𝑖𝑖𝑖𝑖 + 𝜔𝜔𝑖𝑖𝑖𝑖 

(12) 

Where 𝜔𝜔 is the noise (two-sided) component �𝜔𝜔 ∼ 𝒩𝒩(0,𝜎𝜎𝜔𝜔2 = exp(𝑊𝑊𝜔𝜔))�. We assume that 𝜂𝜂 follows 

a half-normal distribution �𝜂𝜂 ∼ 𝒩𝒩+�0,𝜎𝜎𝜂𝜂2 = exp�𝑊𝑊𝜂𝜂���.  

An advantage of deriving the demand for pesticides as in (12) is to prevent endogeneity issues that 
mainly affect the production technology's primal representation. Here the demand for pesticides only 
depends on its price, an approximation of the revenue and the entropy level 𝑇𝑇.  
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Equations in (12) can be estimated using a maximum likelihood approach by writing the convolution 
of 𝜂𝜂 + 𝜔𝜔 (Aigner, et al., 1977). To account for drivers of pesticides inefficiency, 𝜎𝜎𝜂𝜂2 is reparameterised 
as 𝜎𝜎𝜂𝜂2 = exp(𝒒𝒒′𝜹𝜹) where 𝒒𝒒 is a vector of inefficiency determinants (Caudill and Ford, 1993, Caudill, et 
al., 1995, Reifschneider and Stevenson, 1991). 

4.1.4 Data 

Our model is estimated on an unbalanced panel data set containing 10,263 observations of 1,765 
wheat producers located in our case study area over the period 1998 to 2014. This sample has been 
extracted from data provided by an accounting agency situated in the Marne département. It contains 
detailed information about crop production for each farm (acreages, yields, input uses, and crop prices 
at the farm gate). These data report input expenditures per crop at the farm level. The corresponding 
input quantities are computed by using the fertiliser, pesticide, and seed price indices issued by the 
French Department of Agriculture at the country level. Finally, each farm's number of different crops 
grown each year is used as a crop diversification index (T). 

Our empirical application focuses on wheat, which is the main crop produced in the area. Wheat acre-
age represents one-third of the total agricultural area in our sample.  

Descriptive statistics of the data are presented in Table 1. 

Table 1: Descriptive statistics of the data 

Variable Mean Standard devia-
tion 

Coefficient of 
variation 

Wheat revenue (Euros/ha) - 𝑅𝑅𝑖𝑖𝑖𝑖 1,125 334.33 0.30 
Wheat yield (ton/ha) - 𝑦𝑦𝑖𝑖𝑖𝑖  8.76 1.03 0.12 
Wheat price (Euros/ton) - 𝑝𝑝𝑖𝑖𝑖𝑖  129.13 37.95 0.29 
Pesticides price index – 𝑣𝑣𝑖𝑖𝑖𝑖 101.72 3.83 0.04 
Pesticides quantity index (per ha) - 𝑧𝑧𝑖𝑖𝑖𝑖 1.57 0.35 0.23 
Diversification index - 𝑇𝑇𝑖𝑖𝑖𝑖 6.18 1.28 0.21 
Total Utilised Agricultural Area - 𝑈𝑈𝐴𝐴𝐴𝐴 (ha) 183.25 95.29 0.32 
Wheat acreage (ha) 58.16 34.76 0.60 
Capital 𝐾𝐾 (Euros/ha)  1,435 886 0.61 
Nitrogen quantity index (per ha) 1.88 0.42 0.22 
Seeds quantity index (per ha) 0.68 0.27 0.40 
Number of producers 1,765 

 

As shown by the figures in Table 1, the farms in our sample are rather large, highly productive, with 
wheat yields close to 9 tons per hectare, and have relatively diversified acreages since they grow 6 
crops each year on average. These are typical characteristics of specialised crop farms in this geograph-
ical area.  

4.1.5 Results 

The maximum likelihood estimates are presented in Table 2. 

The results obtained with the exponential and logistic specifications are virtually very similar, which 
shows their robustness. In both cases, parameters are significantly estimated and generally have ex-
pected signs.  
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Interestingly, parameter 𝑏𝑏1 is positive and parameter 𝑏𝑏2 is negative, implying that crop diversification 
has a positive impact on damage abatement if no pesticides are used but this impact decreases with 
an increase in the volume of pesticides used. This is further illustrated on Figure 4. 

The average efficiency of pesticide use is about 82%. As shown in Figure 2, efficiency scores range from 
65% to 95%. Larger farms, in terms of UAA and capital, are more efficient. 

Pesticides could be reduced by 5% to 35% without impacting wheat yield if all farmers were fully effi-
cient in using pesticides. These figures are much lower than those found by Lechenet et al. (2017) who 
did not account for endogeneity issues in the estimation of production function and found some cases 
where pesticides had a negative impact on yields. 

The average abatement level is equal to 92.88% and could reach 94.84% if farmers were fully efficient. 

Table 2: Estimation results of models 

Variables 
Damage abatement specification 
Exponential specifi-
cation Logistic specification 

Pesticides demand function    
𝜆𝜆 / 𝛾𝛾 1.86*** 1.97*** 
𝑏𝑏1 / 𝑠𝑠1 -0.036*** -0.028** 
𝑏𝑏2 / 𝑠𝑠2 0.089*** 0.079*** 
𝛼𝛼 / 𝜃𝜃  -0.492*** -0.263*** 
Inefficiency determinants   
Intercept 0.415 0.431 
log(𝑈𝑈𝐴𝐴𝐴𝐴)  -0.165*** -0.166*** 
log (𝐾𝐾)  -0.224*** -0.225*** 
Noise component   
𝑊𝑊𝜔𝜔  -2.875*** -2.876*** 
Log-likelihood -2922.884 -2919.363 
Average efficiency (%) 82.33 84.60 
Average abatement 𝒈𝒈 (%) without inefficiency 94.84 95.20 
Average abatement 𝒈𝒈 (%) with inefficiency 92.88 93.56 
Number of observations 10,263 10,263 

Note: The model is estimated with year dummies to account for the 𝛼𝛼𝑖𝑖 and 𝜃𝜃𝑖𝑖  parameters in equations in (18). 

 
Figure 2: Efficiency scores distribution 

 
Figure 3: Efficiency scores and pesticide use 
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Figure 3 shows that efficiency decreases with the volume of pesticides used per hectare. These results 
may imply some scale effects associated with the efficient use of pesticides.  

Figure 4 represents the evolution of damage abatement with the quantity of pesticides simulated with 
our models for the different numbers of crops grown by farmers in our sample, which range from 1 to 
10. As expected, the damage abatement is an increasing function of the quantity of pesticide. More 
interestingly, we can distinguish 3 parts in these graphs. For very low levels of pesticides the number 
of crops positively impacts damage abatement. This could reflect low-input crop (ecological) crop pro-
duction practices where farmers take advantage of crop diversification to manage pests. For medium 
levels of pesticides, the number of crops has a negative impact on damage abatement. This might 
correspond to the common case of relatively intensive crop production practices. For very high levels 
of pesticides, the number of crops has no impact on damage abatement. At these high levels corre-
sponding to very intensive crop production practices, pesticides eliminate almost all the pests since 
the damage abatement function asymptotically converges to one. 

 
Figure 4: Average evolution of 𝒈𝒈 depending on pesticides volumes and crop diversification 

 

Figure 5 exhibits the relation between pesticide demand and its price while accounting for crop diver-
sification. In the figure one can see an apparent decrease in pesticide demand with the price. On the 
other hand, a disparity appears depending on the level of crop diversification. For instance, when the 
price of pesticide is low, farmers use a lot of pesticides and do not take advantage of crop diversifica-
tion to manage pests (on the contrary, growing more crop may incite them to use more pesticides to 
save time in managing pests), while when pesticide price increases they take more advantage of crop 
diversification. A tax on pesticide could thus incite farmers to manage their acreages so as to better 
exploit crop diversification to reduce their use of pesticides. 

 



  

LIFT – Deliverable D3.1  
 

L I F T - H 2 0 2 0  P a g e  158 | 246 

 
Figure 5: Evolution of pesticides demand depending on prices and number of crops 

 

4.1.6 Discussion and conclusion 

This work focuses on re-assessing farmers' potential inefficiency in the use of pesticides. To this aim, 
pesticides are treated not as productive inputs but as a damage control input. Under this assumption 
coupled with a profit-maximising behaviour, we derive pesticide demand which is a function of the 
revenue, crop diversification, and inefficiency. Our application to a sample of French wheat producers 
which exhibit a level of inefficiency ranging between 5% and 35%. On average, farmers could reduce 
by almost 15% their consumption of pesticides per hectare without affecting their yield. Moreover, 
our results show that crop diversification matters only for a very low level of pesticide use and has a 
null influence on damage abatement at high levels of pesticides.  

Two types of recommendations for pesticide reduction policies can be drawn from these results. First, 
contrary to the findings of Lechenet et al. (2017), our results on efficiency show that the reductions in 
pesticide use that could be achieved through only a more efficient use of pesticides by farmers, and 
thus without a decrease in their productivity, are small. Thus, a public intervention seems necessary 
to encourage farmers to reduce their pesticide use, either by compensating them for the loss of profit 
due to the decrease in their productivity or by making pesticides more costly through a taxation policy. 
Second, our results on the effects of crop diversification on damage abatement suggest that, if a public 
policy was implemented to discourage the use of high dosages of pesticides, farmers could fully benefit 
from the positive impacts of crop diversification, which would, in turn, limit their loss of productivity, 
and thus profit. 
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4.2 Technical-economic and environmental farm performance of dairy farms in Aus-
trian case study regions Steyr-Kirchdorf and Salzburg und Umgebung (BOKU) 

 

Andreas Niedermayr, Peter Walder, Lena Schaller, Laura Eckart and Jochen Kantelhardt  

 

University of Natural Resources and Life Sciences, Vienna (BOKU); Department of Economics and Social 
Sciences, Institute of Agricultural and Forestry Economics, Austria 

 

4.2.1 Introduction 

The aim of the present study is to investigate and compare farm performance of a broader variety of 
ecological dairy farming systems in two Austrian case study regions. Austria is a particularly interesting 
case for such an analysis, as the dairy sector has already undergone an ecological transition, which the 
EU currently strives to achieve at a broader scale. Based on data from the LIFT large-scale farmer survey 
(Tzouramani et al., 2019), we calculate several indicators of technical-economic farm performance, 
comprising profitability indicators including/excluding subsidies and opportunity costs for own produc-
tion factors, partial productivity indicators and finally efficiency measures estimated with data envel-
opment analysis (DEA). In order to also reflect non-marketable outputs of ecological farming systems, 
we additionally investigate performance indicators related to environmental performance and animal 
welfare. All indicators are compared according to the degree of ecological approaches adopted by 
farms in the case study region. Further, drivers of farm performance are assessed with second-stage 
regression analyses.  

4.2.2 Description of case study region 

The Austrian case study region consists of the two NUTS3 regions Steyr-Kirchdorf (AT314) and Salzburg 
und Umgebung (AT323). Both regions are situated at the northern edge of the Alps and northern alpine 
foothills. They cover a broad gradient of site conditions, ranging from very fertile and intensively used 
arable land and grassland at lower elevations in the north to more marginal grassland in the moun-
tainous south. Both regions are consequently characterised by a large share of farms specialised in 
grazing livestock and dairy farming, which make up 10% of all farms with milk delivery in Austria. In 
general, dairy farms in Austria are mostly family farms with roughly 33 ha utilised agricultural area 
(UAA), 22 dairy cows and 36 total livestock units on average (LBG, 2020). Dairy farms in the case study 
region have a similar structure. 

When looking at the degree of ecological approaches adopted by dairy farms in Austria and the case 
study region in particular, two main production systems are most common: organic farming and silage-
free milk production. The share of organic farms in Austria is with a total of 18% quite high compared 
to the average of the European Union. This is also true, when looking at farms with milk delivery to 
dairies, where the percentage of organic farms is with roughly 25% even higher. While Steyr-Kirchdorf 
reflects these values quite well, the share of organic farms and organic farms with milk delivery com-
pared to all farms with milk delivery is even higher in Salzburg und Umgebung with 43% and roughly 
52%, respectively. Especially in Salzburg und Umgebung silage-free milk production plays an important 
role for dairy farms, which is important for the production of hard cheese. This practice is also certified 
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within the EU quality scheme as traditional speciality guaranteed (TSG)20 under the name haymilk and 
many farms, producing silage-free milk are certified as haymilk TSG farms. Production of haymilk TSG 
limits feed for cattle to fresh forage and hay, complemented to a limited degree by grain. Additionally, 
no fermented fodder (silage) and genetically modified feed is allowed. Production of haymilk TSG can 
be applied on conventional as well as organic farms, whereas the combination with organic farming is 
especially common in Salzburg und Umgebung (Strauss and Darnhofer, 2015). From an environmental 
point of view, haymilk is also associated with a less intensive usage of grassland, as grass can be cut 
less often, when hay is produced, compared to silage, which can be beneficial for biodiversity on grass-
land. Also, as for organic and organic haymilk farms, concentrate feed costs are higher, these farms 
tend to use less external feed, resulting in a higher degree of circularity of feed input (i.e. more feed 
comes from the farm). In the context of the LIFT project conventional haymilk and organic haymilk 
systems thus share some similarities with low-input and integrated farming systems, as defined in LIFT 
Deliverables 1.1, 1.3 and D1.4 (Rega et al., 2018; Rega et al., 2019; Rega et al., 2021), additionally to 
the characteristics of organic farming systems, also described in these Deliverables.  

4.2.3 Method 

We use the farming systems described in the previous section to differentiate farms according to an 
increasing degree of ecological approaches adopted. Specifically, we differentiate between (i) conven-
tional farms as the most intensive and from an environmental point of view unrestricted production 
system, followed by (ii) conventional haymilk farms, complying with the standards of haymilk TSG, (iii) 
organic farms, which comply with the standards of organic farming and (iv) organic haymilk farms, 
combining the standards of haymilk TSG and organic farming, which we consider as the most extensive 
and ecological farming system. 

In order to investigate technical-economic and environmental performance of these four groups, we 
use several indicators. In terms of technical-economic performance we particularly calculate profita-
bility indicators, partial productivity indicators and efficiency indicators. For environmental perfor-
mance we calculate several simple indicators, an aggregated animal welfare index (AWI) and also effi-
ciency indicators. 

Profitability indicators are calculated as revenue cost ratio (RCR). The advantage of using ratios is that 
they are easy to interpret and compare. A ratio greater than one means that a farm is profitable, while 
a ratio smaller than one indicates the opposite. Similar indicators have been also used in the literature 
(Davidova et al., 2002; Bojnec and Latruffe, 2013). We calculate these RCRs with and without consid-
ering public payments to farms and with and without opportunity costs of the three production factors 
land, labour and capital in order to be able to compare farms depending on structural differences in 
terms of ownership of the production factors (e.g. a farm, operating mainly on rented land vs. a farm 
operating mainly on own land). For the calculation of opportunity costs of production factors we use 
farm-specific rental prices, which are weighted according to the share of arable land and grassland to 
evaluate land. In order to evaluate labour, we use a uniform wage of 15 EUR/hour, which is derived 
from average costs for outsourcing work to a machinery ring. For capital we use a uniform interest rate 
of 1%. This results in a total of 4 RCRs. 

With respect to productivity, we compute quantitative partial productivity indicators, by dividing out-
put through the individual inputs. In order to assess overall productivity of farms, we also calculate 
efficiency indicators, which consider all inputs and outputs jointly and additionally express productivity 

                                                           
20 https://ec.europa.eu/info/food-farming-fisheries/food-safety-and-quality/certification/quality-labels/quality-schemes-ex-
plained_en 
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of farms as a relative measure, in comparison to benchmark farm(s). The two most common ap-
proaches to estimate efficiency are stochastic frontier analysis (SFA) and data envelopment analysis 
(DEA) (Coelli et al., 2005). In this analysis we rely on (DEA) to estimate efficiency indicators. DEA is a 
non-parametric method and has been used for a long time to analyse technical-economic farm perfor-
mance of dairy farms (Fraser and Cordina, 1999). When implementing a DEA model, the question 
arises, whether to measure efficiency based on an input- or output orientation. We consider an output 
oriented DEA model, which is quite common in agriculture, as farmers have more control over their 
input use, meaning they try to maximise their output, based on their chosen input level (Karagiannis, 
2014). Bias corrected efficiencies, which consider the truncated nature of DEA efficiencies, were cal-
culated with R (R Development Core Team, 2021) and the package {rDEA} (Simm and Besstremyan-
naya, 2020).  

In order to compare, whether technical-economic and ecological farm performance of at least one 
group differs statistically significant compared to all others, we use a non-parametric Kruskal-Wallis 
rank sum test and additionally compare each group with one another individually using a non-para-
metric Mann-Whitney-U test. Finally, we assess the effect of drivers on efficiency indicators with a 
second-stage truncated regression with the double bootstrap approach from Simar and Wilson (2007). 

4.2.4 Data 

The collected data for this analysis is based on the LIFT large-scale farmer survey (Tzouramani et al., 
2019) and refers to the year 2018. In our case study region, the survey was conducted face to face by 
BOKU staff between December 2019 and March 2020. Respondents were recruited with support of 
the regional chambers of agriculture, which provided contacts to farms. Additional respondents were 
identified via snowball sampling. The main aim in the sampling process was to cover a broad degree of 
ecological farm types in the survey.  

In total we calculate four different DEA models, all with identical input definitions, but different output 
definitions. The definitions of in- and outputs are provided in Table 1. As inputs we use land, labour, 
capital, intermediate expenses and herd size, with similar input specifications being quite common for 
dairy farms (Kellermann and Salhofer, 2014). Land is measured in ha UAA. Labour is measured in an-
nual working units (AWU) according to the definition of the Austrian FADN data, where a value of one 
denotes full-time equivalent employment of one person and includes unpaid family labour as well as 
hired labour. Intermediate expenses are expressed in Euros and include regular expenses for e.g. feed, 
energy, plant protection or machinery services, among others. Herd size is measured in livestock units 
(LSU), according to FADN definitions. For capital, depreciated recreation/replacement values of main 
buildings and machinery were calculated based on a detailed assessment of type, size and age and 
then summed up to arrive at an estimate for capital stock.  

While outputs in model 1 (total output excluding subsidies) and model 2 (milk in kg, other output in 
EUR) focus on technical economic farm performance, outputs in models 3 (total output excluding sub-
sidies, animal welfare index) and 4 (total output including agri-environmental and organic subsidies) 
also take into account environmental aspects of farm performance.  

The animal welfare index in model 3 was calculated, based on 4 animal welfare indicators, derived 
from the survey data. They consist of a mixture of an outcome-based indicator, namely veterinary 
expenses as a proxy for animal health and resource-based measures, namely stable size as well as 
seasonal pasture and general outdoor access. Animal welfare promoting measures like grazing can also 
be associated with positive effects on farmland biodiversity, e.g. through more differential plant 
growth, leading to heterogenous patches (Benton et al., 2003). 
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With respect to the output definition in model 4, in the empirical literature, subsidies are usually not 
considered as part of the output, as they are not a physical output generated through the production 
technology (Minviel and Latruffe, 2017). This is in particular the case for direct payments from pillar 
one and LFA payments. However, recent research suggests that farms may be rationally inefficient 
(Hansson et al., 2018), meaning that they derive non-use values from e.g. the provision of public goods 
like enhanced animal welfare or farmland biodiversity. In this context, we follow Renner et al. (2021), 
arguing that ecological payments, based on voluntary agri-environmental measures reflect the mone-
tary compensation for the provision of non-marketable goods by farmers like animal welfare or farm-
land biodiversity and are accompanied by adjustments of input levels of farmers.  

Table1: Input and output definitions of DEA models 
Model 
name Output definition Input definition 

Model 1 Total output excluding subsidies (EUR) 
Land (UAA in ha), labour (AWU), 
capital (EUR), intermediate ex-
penses (EUR), herd size (LSU) 

Model 2 Milk (kg), other output excluding milk (EUR) 

Model 3 Total output excl. subsidies (EUR), AWI 

Model 4 Total output including agri-environmental and organic subsidies (EUR) 

Note: AWI = animal welfare index, UAA = utilised agricultural area, AWU = agricultural working unit, LSU = livestock unit. 

With respect to potential drivers of farm performance, the survey allowed us to collect information on 
a broad variety of variables, ranging from socio-economic characteristics of farmers (e.g. age, gender, 
education, whether the farming will be continued in the next 5 years), variables describing farm struc-
ture (share of rented land, share of estimated household income from farming, subsidies, measured 
as intensities (i.e EUR/ha UAA) and split up into direct payments from pillar one of the CAP, agri-envi-
ronmental payments including those for organic farming and payments for less favoured areas (LFA). 
Finally, we investigate a set of further drivers, reflecting prices (milk price and rental prices for land) 
and agronomic conditions (altitude, share of forest area, a dummy for farms operating only on grass-
land and a regional dummy for Salzburg und Umgebung). 

4.2.5 Results 

4.2.5.1 Descriptive statistics 

Table 2 provides an overview of the variables used for the DEA and potential drivers of technical-eco-
nomic farm performance. Mean values for each variable were calculated for the whole sample and the 
4 farm types. Conventional farms (n = 35) make up the biggest group, followed by organic haymilk 
farms (n = 20), organic farms (n = 16) and conventional haymilk farms (n = 10).  

As can be seen from the descriptive statistics, conventional farms in our sample are on average the 
largest, followed by conventional haymilk farms, organic haymilk farms and organic farms. When look-
ing at inputs, conventional farms also have the highest level of input-use. However, for the ecological 
farm types, the order is less clear in comparison to the outputs. It is for example noticeable that organic 
haymilk farms have the highest capital stock of ecological farm types, reflecting the higher costs for 
housing and production of hay, for which many farms have hay drying equipment, which raises capital 
costs. Organic farms on the other hand have the lowest value of capital stock and labour input. Also, 
intermediate expenses differ mainly between the two conventional and the two organic farm types. 
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Table2: Descriptive statistics of DEA variables and potential drivers of technical-economic and environ-
mental farm performance 

Variable 
Whole sam-

ple  
(n = 81) 

Conventional 
(n = 35) 

Conventional 
haymilk 
(n=10) 

Organic 
(n=16) 

Organic  
haymilk 
(n=20) 

Output(s) and inputs of DEA models           
Total output (EUR) 124,221.63 150,987.08 125,908.94 88,596.01 105,038.93 

Milk (kg) 235,863.52 322,921.11 247,948.50 131,562.50 160,911.05 

Other output excluding milk (EUR) 23,417.40 27,115.77 17,471.50 24,782.88 18,825.80 

Subsidies (excluding investments (EUR) 21,622.41 19,949.73 21,489.97 22,912.42 23,583.82 

Animal welfare index 0.48 0.37 0.40 0.59 0.61 

Land (ha UAA) 35.64 38.59 36.15 34.11 31.44 

Labour (AWU) 2.36 2.49 2.36 2.19 2.26 

Capital (EUR) 610,567.79 662,852.11 595,547.82 499,548.28 615,395.82 

Intermediate expenses (EUR) 50,383.07 62,408.40 61,541.18 36,118.00 35,171.75 

Herd size (LSU) 62.46 72.93 70.86 45.29 53.66 

Additional variables           
Male (dummy) 0.77 0.86 0.50 0.81 0.70 

Higher education (dummy) 0.89 0.86 0.70 1.00 0.95 

Age (years) 42.37 41.71 39.10 45.25 42.85 

Continue farming (dummy) 0.90 0.80 1.00 0.94 1.00 

Share of household income from farming 0.69 0.70 0.81 0.57 0.69 

Share of rented land 0.38 0.38 0.36 0.32 0.42 

Depreciation rate  0.58 0.56 0.63 0.59 0.57 

Share of dairy cows from total cattle 0.57 0.56 0.59 0.57 0.57 

Subsidies (EUR/ha UAA) 630.27 532.87 588.19 705.04 761.92 

Subsidies pillar one (EUR/ha UAA) 273.66 283.90 268.46 266.55 264.02 

Subsidies AES and organic (EUR/ha UAA) 260.60 137.37 268.22 304.18 437.58 

Subsidies for LFA (EUR/ha UAA) 95.82 111.60 50.07 134.31 60.28 

Share of forest area from total farmland 0.20 0.20 0.15 0.31 0.12 

Altitude (m) 530.53 520.20 579.80 511.81 538.95 

Permanent Grassland (dummy) 0.60 0.37 0.50 0.81 0.90 

Salzburg und Umgebung (dummy) 0.48 0.26 1.00 0.12 0.90 

Milk price (EUR/kg) 0.44 0.37 0.43 0.48 0.53 

Rental price (EUR/ha) 307.12 287.67 424.94 207.40 362.01 

Note: Values denote means. 

4.2.5.2 Indicators of technical-economic and environmental farm performance 

Table 3 shows a comparison of technical-economic and environmental farm performance indicators 
between the different farm types. Milk yield clearly reflects the expected differences between the 
ecological farm types. The profitability indicators indicate that all farm types can cover their costs on 
average, if opportunity costs regarding production factors are not considered. However, if opportunity 
costs are used to evaluate all production factors, farms can no longer cover their costs on average. As 
can be seen in the table, there are also differences between the ecological farm types, but these dif-
ferences are not significant. Market orientation is around 80%, meaning that roughly 20% of revenues 
come from subsidies. The differences between the farm types are much smaller than for the profita-
bility indicators, nevertheless they are statistically significant.  



  

LIFT – Deliverable D3.1  
 

L I F T - H 2 0 2 0  P a g e  165 | 246 

Table 3: Comparison of indicators of technical-economic and environmental farm performance 

 Conventional 
(n = 35) 

Conventional 
haymilk 
(n=10) 

Organic 
(n=16) 

Organic hay-
milk 

(n=20) 
Sig. 

Indicators of technical-economic farm performance 

Milk yield (kg/cow) 8,120.81a,b,c 6,784.94a 6,275.16b 6,142.41c *** 

Private RCR excluding opp. costs 1.37 1.25 1.23 1.37  

Public RCR excluding opp. costs 1.61 1.48 1.56 1.70  

Private RCR including opp. costs 0.72 0.62 0.60 0.65  

Public RCR including opp. costs 0.82 0.74 0.76 0.80  

Market orientation 0.84b,c 0.83d 0.79b 0.80c ** 

Output per ha of UAA (EUR) 3,760.74b 3,382.21 2,722.56b 3,304.83  

Output per AWU (EUR) 62,586.97b 54,062.03 42,457.22b 47,842.32  

Output in relation to assets (EUR) 0.25c 0.25 0.23 0.21c  

Output in relation to interm. exp. (EUR) 2.58c 2.26e 2.68 3.17c . 

Output per LSU (EUR) 1,986.22 1,735.53 1,979.55 1,946.99  

Eff. model 1 (output in EUR) 0.79 0.72 0.78 0.76  
Eff. model 2 (kg milk and other output in 
EUR) 0.81a,b,c 0.69a 0.72b 0.63c *** 

Indicators of environmental farm performance 

Veterinary expenses (EUR / cow) 108.43b,c 115.69 73.03b 63.15c * 

Stocking density (LSU/ha) 1.85b 1.92d 1.42b,d,f 1.69f * 

Seasonal pasture (days / year) 55.89b,c 85.00 117.27b 139.62c ** 

Outside (days / year) 74.78b,c 66.96d,e 171.06b,d 174.27c,e *** 

Stable size (m² / LSU) 11.17b,c 12.71 17.89b 14.94c * 

Animal welfare index (AWI) 0.37b,c 0.40d,e 0.59b,d 0.60c,e *** 

Eff. model 3 (output1 and AWI) 0.85 0.83 0.88 0.89  

Subsidies agri-env and organic (EUR/ha) 137.37a,b,c 268.22c,e 304.18f 437.58c,e,f *** 

Eff. model 4 (output incl. subsidies in EUR) 0.79 0.73 0.81 0.80  

Note: Sig. indicates a statistically significant difference of location parameters for at least one of the groups compared to all 
other groups, according to a Kruskal-Wallis rank sum test with ***, **, *, and . indicating significance at the 0.1%, 1%, 5% and 
10% level, respectively. Additionally, a,b,c,d,e,f denote, whether differences are statistically significant at least at the 10% level 
or higher, when comparing two groups at a time, with the following notation: a = conventional vs. conventional haymilk, 
b = conventional vs. organic, c = conventional vs. organic haymilk, d = conventional haymilk vs. organic, e = conventional hay-
milk vs. organic haymilk and f = organic vs. organic haymilk. 

With respect to partial productivity indicators, some tendencies can be seen from the data. For exam-
ple, conventional farms show statistically significant higher productivity with respect to land and la-
bour compared to organic farms and also with respect to capital, compared to organic haymilk farms. 
Regarding intermediate expenses conventional haymilk farms seem to be less productive than organic 
and especially organic haymilk farms. Finally, output per LSU indicates no substantial differences.  

In terms of efficiency indicators, we carried out calculations based on constant returns to scale (CRS) 
and variable returns to scale (VRS), but report only the VRS results, as a test between the two specifi-
cations showed that this specification better describes the production process. In order to ease inter-
pretation, we calculated the inverse of output-oriented efficiencies, resulting in efficiency scores be-
tween 0 and 1, where 1 indicates a fully efficient farm. 
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Efficiency estimates based on the first output specification with aggregate market revenues indicate 
no statistically significant differences between groups. This changes however, when the differences in 
milk prices are taken out by including physical milk production as a separate output in the model to-
gether with other output measured in Euros. This indicates that milk yields cannot keep up if cows 
receive a diet consisting mainly of rough forage. At the same time, comparing these results with the 
first DEA model shows, that higher milk prices for haymilk, organic milk and organic haymilk compen-
sate to some extent for lower milk yields. 

For environmental farm performance indicators differences between the groups are mostly statisti-
cally significant and show the expected tendencies. The higher the degree of ecological approaches, 
the higher the performance level. However, if the AWI is considered as an additional output in DEA, 
results are significantly different only between conventional farms and organic haymilk farms as well 
as between conventional haymilk farms and organic haymilk farms. 

For DEA model 4, the average efficiency scores of the groups are almost the same. Comparing these 
results with those of DEA models 1 and 2 shows that differences in efficiency between the groups are 
mostly eliminated by including subsidies in the aggregated output.  

4.2.5.3 Drivers of technical-economic and environmental farm inefficiency 

The results with respect to the drivers of technical-economic and environmental farm inefficiency can 
be found in Table 4. It needs to be noted that here the dependent variables are the original output 
orientated efficiency measures of the four DEA models, where a value of 1 denotes an efficient farm 
and a value greater than one an inefficient farm. Consequently, negative coefficients denote a positive 
effect on efficiency and vice versa. Despite the different dependent variables, there are several com-
monalities visible in the results across models.  

Firstly, we find, ceteris paribus, a negative effect of male farm managers on efficiency in all models. 
Higher education is associated with higher efficiency in all models. For subsidies, we find a slight posi-
tive effect of intensity of pillar one payments in model 2 and a negative effect of AES and organic 
subsidies in models 2 and 3. The other subsidy variables are not significant. Also, AES and organic sub-
sidies were not included in the regression based on results of DEA model 4, as in this model these 
payments are part of the output. 

Results with respect to the degree of ecological approaches adopted by farms show that all of the 
ecological farm types tend to have a negative effect on efficiency. The negative effect is most pro-
nounced for conventional haymilk farms, where it is significant in all models, while for organic farms 
the effect is only significant in model 4. For organic haymilk farms the effect is not significant in model 
3, but significant in all other models.  

Moving on to farm structural variables, a higher share of dairy cows from total cattle is associated with 
a higher efficiency level, indicating that higher specialised dairy farms tend to be more efficient. The 
same trend can be seen when looking at the share of household income from farming, where the co-
efficient is significant in models 3 and 4. In contrast to that, farms with a higher share of rented land 
tend to be less efficient.  

When investigating prices as drivers of efficiency, results show that both, higher milk prices and higher 
rental prices for land are associated with higher efficiency. Note that we did not include milk prices as 
driver in the regression based on model 2, as in this model efficiency with respect to milk production 
only depends on the quantity of milk. 
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Finally, the other drivers, controlling for site conditions and location are not statistically significant, 
with the exception of altitude in model 3. This means when considering the above-mentioned drivers, 
site conditions have predominantly no further statistically significant effect on efficiency estimates. 

Table 4: Results of second stage truncated regression: drivers of inefficiency 

Model description 
Eff. model 1 (aggre-
gated market reve-

nue in EUR)) 

Eff. model 2  
(milk in kg and 
other market 

revenue in 
EUR) 

Eff. model 3  
(output 1  
and AWI) 

Eff. model 4 
(market reve-
nues including 

subsidies in EUR) 

Variable Coefficients and statistical significance levels 

Intercept 6.2892 * 3.3344 * 6.0524 * 5.6829 * 

Male (dummy) 0.7442 * 0.6994 * 0.3573 * 0.5930 * 

Higher education (dummy) -0.386 * -0.3755 * -0.2694 * -0.3207 * 

Age (years) -0.0065  -0.006  0.0046  -0.0019  

Continue farming (dummy) -0.3126  -0.6279 * 0.3442 * -0.1926  

Subsidies pillar one (EUR/ha UAA) -0.0031  -0.0045 * 0.0005  -0.0012  

Subsidies AES and organic (EUR/ha UAA) 0.0019  0.0022 * 0.0017 * NA  

Subsidies for LFA (EUR/ha UAA) 0.0006  0.0026 * 0.0003  0.0003  

Conventional haymilk farm (dummy) 1.1696 * 0.8759 * 0.7938 * 1.1402 * 

Organic farm (dummy) 0.4285  0.0998  0.3076  0.5389 * 

Organic haymilk farm (dummy) 1.1578 * 0.4376  0.6633 * 1.2946 * 

Share of dairy cows from total cattle -1.7087 * -1.3993 * -2.5701 * -1.7777 * 

Share of household income from farming -0.4163  -0.2181  -1.0441 * -0.4931 * 

Share of rented land 0.7203 * 0.798 * 0.3752 * 0.5752 * 

Depreciation rate  0.6663  0.073  -0.2275  0.5518  

Milk price (EUR/kg) -7.838 * NA  -7.6917 * -7.1911 * 

Rental price (EUR/ha) -0.0025 * -0.0014  -0.0012 * -0.0021 * 

Share of forest area from total farmland 0.0936  -0.1132  0.1304  0.0543  

Altitude (m) -0.0008  -0.0009  -0.0014 * -0.0006  

Permanent Grassland (dummy) -0.1373  -0.0657  -0.1309  -0.0787  

Salzburg und Umgebung (dummy) 0.1518  0.2991  0.1794  0.1991  

Note: * indicates significance at the 5% level or higher. 

4.2.6 Discussion and conclusions 

Our results indicate that more extensive dairy farming systems perform better in terms of environ-
mental outputs and animal welfare. Additionally, they can compete from an economic point of view 
to some extent with more intensive systems. 

Several aspects need to be considered, when interpreting our results. Firstly, our sample is not repre-
sentative for the farm population in the two regions according to some key variables (e.g. larger farm 
size). However, such professionally led ‘model farms’ show what is possible in the respective produc-
tion system, serving possibly also as role models for other farmers. From a methodological point of 
view, including more than one output in an output-orientated DEA model gives farms more possibili-
ties to become efficient, which can be seen, when comparing e.g. results of model three with those of 
models one, two and four, respectively. Finally, due to the limited size of the sample and the sub-
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groups of ecological farm types, we could not consider additional methodological possibilities like 
matching or separate production technologies for the respective farm types to account for possible 
biases due to sample selection or differences in production technology between the groups. 

Given these limitations, our analysis can still provide very detailed regional insights into these 4 dairy 
farming systems. Also, due to the regional focus our results are more ground-truth. We intensively 
discussed our results with regional stakeholders and farmers, who agreed with our findings and con-
firmed that they reflect what is occurring in the regions. 

Given the unique situation in Austria and the case study region with an already very advanced ecolog-
ical transition of dairy farms, we draw the following conclusions based on our results and exchanges 
with regional stakeholders. Public payments for public goods provided by dairy farms, together with 
higher market prices for their market goods seem to be able to offset a decrease in production of 
market goods to a substantial degree. The possible exceptions are conventional haymilk farms, which 
seem to perform slightly worse, compared to the other ecological farm types. Possibly, this form of 
milk production is not distinct enough, as it does not yet profit from the positive brand image of organic 
farming, which is very popular in Austria, reflected also in higher prices for organic products. However, 
it needs to be noted that this group of farms was also the smallest group in our sample, consisting only 
of 10 farms.  

Sustainable economic success of more ecological farming systems requires the right framework con-
ditions, in our case acceptance of the respective ecological farm type and its products by society, de-
mand for their products by retailers and consumers, reflected in adequate market prices and finally 
also public support. 
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4.3.1 Introduction 

The aim of the present study is to investigate and compare farm performance of different dairy farming 
systems, going beyond a comparison of only conventional and organic farms with broadly available 
European FADN data. Austria is a particularly interesting case for such an analysis, as it has already 
undergone a very dynamic ecological transition of the farming sector. 

Methodologically our study consists of the following steps: firstly, we identify different ecological dairy 
farming systems using the FADN protocol for the LIFT farm typology (Rega et al., 2019; Thompson et 
al., 2021; Rega et al., 2021). Secondly, we calculate various simple and more sophisticated indicators 
to analyse and compare technical-economic and environmental farm performance of the identified 
systems. In order to control for certain biases in such a comparison, we employ a matching procedure 
to control for selection bias and a Data Envelopment Analysis (DEA) based meta frontier of production 
possibilities to identify performance gaps. Finally, we analyse several drivers of technical-economic 
and environmental farm performance with econometric methods. Our results show potential syner-
gies and trade-offs in terms of economic and environmental performance of the identified farming 
systems and of switching to a more ecological farming system.  

4.3.2 Description of case study region 

With exception of the Danube valley and the north-eastern and south-eastern plains, Austria is domi-
nated by mountains, making up roughly 64% of the total area. These areas are dominated by forests 
and permanent grasslands and farms have consequently specialised on grazing livestock husbandry. 
Dairy farms and more extensive grazing livestock farms, are the most common farm types in these 
regions. In total, specialist grazing livestock farms make up around 45% of all farms in Austria, of which 
roughly half (24%) deliver milk to dairies (Federal Ministry of Agriculture, Regions and Tourism, 2020). 
Dairy farms in Austria are mostly family farms with an average of around 22 dairy cows, a total number 
of livestock units of about 36 and roughly 33 ha of utilised agricultural area (UAA), which is mostly 
permanent grassland. Dual use breeds are dominating and the average milk yield is around 7,800 kg 
per dairy cow. These farms also often generate additional revenue from forestry and other gainful 
activities including for example the provision of (machinery) services or agro-tourism, additionally to 
dairy farming (LBG, 2020).  

In terms of degree of ecological approaches in the farming sector, many dairy farms in Austria have 
already converted to organic farming as a more extensive form of agricultural production. Austria has 
the highest share of organic farms in the EU (18.3% in 2017) and the share of organic farms with milk 
delivery is even higher (25.5% in 2017) (Federal Ministry of Agriculture, Regions and Tourism, 2020). 
The organic farming sector in Austria experienced a very dynamic development in the 1990s, shortly 
before and after Austria joined the EU in 1995 with a growth from around 2,000 organic farms in 1992 
to around 20,000 organic farms in 1998. This successful transition to organic farming was supported 
by government subsidies and a successful development of organic products and brands as well as their 
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broad acceptance by large food chains and supermarkets (Vogl and Hess, 1999). After this period of 
huge growth, the number of organic farms developed less dynamically and reached around 24,000 
farms in 2019. This is still considerable, if one takes into account structural change, characterised by a 
steady decline of the total number of farms from about 160,000 in 2000 to around 120,000 in 2019 
(Federal Ministry of Agriculture, Regions and Tourism, 2020).  

4.3.3 Method 

Our methodological approach in this study consists of four steps: (i) identification of different ecolog-
ical farming systems, (ii) calculation of performance indicators (iii) comparison of performance indica-
tors between groups and (iv) analysis of drivers of farm performance. Some of the used performance 
indicators, the method of efficiency estimation and the in- and output definitions for efficiency esti-
mation are similar to the study in chapter 4.2. A more detailed description of these aspects can be 
found there. 

We identify different ecological farming systems, using the protocol for the LIFT farm typology (Rega 
et al., 2019; Rega et al., 2021) and a computer program to implement the protocol (Thompson et al., 
2021). As of now, the protocol allows to identify the following farming systems: (i) low input farms are 
characterised by a low level of input use, (ii) integrated farms are characterised by a high degree of 
circularity in their input use and (iii) organic farms, are farms that are either partially or fully certified 
as organic farms according to FADN data. While the classification of organic farms is straight forward, 
for the classification of low input and integrated systems requires first the calculation of several indi-
cators and total scores for each farming system are then calculated based on a weighted average of 
the individual variable scores. The methodology is designed in a way that farms can belong to more 
than one farming system at the same time (e.g. low input, integrated and organic). In contrast, stand-
ard farms are those farms, which do not belong to any of the other farming systems. 

A wide range of farm performance indicators are calculated in this analysis. In terms of technical-eco-
nomic performance we investigate indicators related to profitability, partial productivity and effi-
ciency, as well as two additional indicators, measuring the market orientation and financial stability of 
farms, respectively. With respect to environmental performance indicators, FADN data only provides 
limited information. We mainly use intensities of inputs related to negative environmental externali-
ties on the one hand and environmental subsidies as a proxy for the amount of public goods produced 
by farms. While this latter approach is far from accurate, it is nevertheless a useful approximation for 
measuring the provision of public goods by farms. 

Profitability indicators are calculated as revenue cost ratio (RCR), where a ratio greater than one means 
that a farm is profitable. A detailed description of the RCRs can be found in the methods section of 
chapter 4.2. Additionally, we consider three more profitability indicators from FADN data, namely 
gross farm income per AWU, farm net value added per AWU and farm net income per AWU of unpaid 
family labour. Partial productivities are calculated as average products by dividing the total output of 
the farm by the individual inputs. Market orientation measures the share of subsidies of total output 
plus subsidies and is a measure of dependence from public payments. Finally, the equity ratio is calcu-
lated by dividing total liabilities through total assets and is an indicator for financial stability. 

Efficiency indicators consider all inputs and outputs of the production process jointly and thus allow to 
assess overall productivity of farms compared to benchmark farms as a relative measure. We use Data 
Envelopment Analysis (DEA) as a method to estimate efficiency of farms. More details on DEA can be 
found in the methods section of chapter 4.2. For the present analysis, we again choose an output-
oriented model and assume variable returns to scale (VRS). The bigger size of our FADN sample allows 
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us to use some further methods, aimed at addressing certain biases, when comparing farm perfor-
mance of the different farming systems. 

Firstly, in order to address a possible sample selection bias due to structural differences between farm-
ing systems, we use matching. The basic idea of matching is to find comparable farms based on ob-
served factors in order to create a valid counter factual and then compare performance of matched 
farms (Ho et al., 2007). In this analysis, we use direct covariate matching (DCM), where matching is 
performed upon several covariates at the same time. As matching algorithm, we use nearest neighbour 
matching with replacement. A statistical comparison of matching covariates before and after matching 
is then carried out in order to test, whether structural differences between the groups have been suc-
cessfully eliminated. After matching, causal inference in terms of comparison of farm performance 
between groups is made by computing the average treatment effect on the treated (ATT). 

Another possibly restrictive assumption is that farms in different farming systems all operate under 
the same production technology. If this is not the case, part of the estimated inefficiency might be 
related to performance gaps due to technological constraints or regulations associated with individual 
farming systems and not actual inefficiency. We therefore further use the metafrontier framework of 
O’Donnell et al. (2008), which allows to split up efficiency into a part related to differences in technol-
ogy, the so-called metatechnology ratio (MTR), and a second part related to actual inefficiency. MTRs 
also help to show which farming system has the most productive technology. 

Finally, drivers of farm performance are assessed with econometric methods. Specifically, we use the 
double bootstrap procedure of Simar and Wilson (2007). Calculations are done in R (R Development 
Core Team, 2021) and the package {rDEA} (Simm and Besstremyannaya, 2020). 

4.3.4 Data 

Our FADN dataset consists of an unbalanced panel of specialised dairy farms (TF14 = 45). Upon inspect-
ing the data, we removed some observations with very unusual input-output combinations. Our panel 
dataset then contains 1,583 observations and 853 farms over both years as well as 796 farms in 2014 
and 787 farms in 2015. All monetary values are deflated with price indices to account for price differ-
ences between the two years. 

We calculate three different DEA models in total, all with the same definitions of inputs, but different 
definitions of outputs (see Table 1). We use the five inputs land (in ha UAA), labour (in annual working 
units – AWU), capital (end of the year value of assets minus value of land and livestock, as both are 
included as separate outputs), intermediate expenses (e.g. for feed, energy, etc. in Euros) and herd 
size (in livestock units – LSU) in all DEA models.  

Table 1: Input and output definitions of DEA models 
Model 
name Output definition Input definition 

Model 1 Total output excluding subsidies (EUR) Land (UAA in ha), labour (AWU), 
capital (EUR), intermediate ex-
penses (EUR), herd size (LSU) 

Model 2 Milk (kg), other output excluding milk (EUR) 

Model 3 Total output including agri-environmental and organic subsidies (EUR) 

Note: AWI = animal welfare index, UAA = utilised agricultural area, AWU = annual working unit, LSU = livestock unit. 

Outputs in model 1 (total output excluding subsidies in EUR) and model 2 (milk in kg, other output in 
EUR) reflect technical-economic farm performance, while output in model 3 (total output including 
agri-environmental and organic subsidies) reflects also environmental farm performance due to the 
inclusion of environmental payments. A more detailed argumentation, why we include environmental 
payments in the output can be found in the data section of chapter 4.2.  
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With respect to potential drivers of farm performance, FADN data only provides limited information 
compared to the LIFT farmer survey. For example, there is no information on socio-economic charac-
teristics of farmers in the data provided by the EU for LIFT. We therefore focussed our analysis on 
variables describing site conditions, farm structure (share of permanent grassland, share of dairy cows 
from total LSU, share of rented land, debt ratio) and subsidies. We split up subsidies into three com-
ponents (decoupled subsidies, LFA subsidies and rural development subsidies), expressing them all as 
intensities (i.e EUR/LSU). Rural development (RD) subsidies contain all RD payments, except LFA and 
investment subsidies. These RD payments mostly stem from the very broad and well-accepted Austrian 
agri-environmental program (ÖPUL) and subsidies for organic farming and can thus be considered as 
payments for the provision of public goods by agriculture (e.g. farmland biodiversity or animal wel-
fare). 

4.3.5 Results 

4.3.5.1 LIFT farm typology 

Results of the application of the LIFT farm typology to our pooled sample of specialised dairy farms 
(n = 1583, t = 2014-2015) are depicted in Figure 1.  

 
Figure1: LIFT farm typology applied to the pooled panel of Austrian dairy farms (n = 1583, t = 2014-
2015) 
As the number of farms classified as low input or a combination of low input and other farming systems 
is too low for a meaningful statistical analysis, we decided not to classify these farms in separate 
groups. Instead, we added them to the other groups, they overlapped with and in the case of the 2 
farms, which were only classified as low input, we added them to the group of standard farms. Thus, 
in our final categorisation the total number of 1583 observations in both years is distributed as follows: 
871 observations are classified as standard farms, which we consider as the most intensive and from 
an environmental point of view unrestricted production system, followed by 274 observations being 
classified as integrated farms, characterised by a higher degree of circularity of input use. Next, 258 
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observations are organic farms, which comply with the standards of organic farming and 184 observa-
tions are integrated organic farms, combining a high circularity of input use and the standards of or-
ganic farming, which we consider as the most ecological farming system. 

4.3.5.2 Descriptive statistics 

Table 2 provides an overview of the variables used for the DEA and additional variables, describing our 
sample. Arithmetic means as well as coefficients of variation (CV) were calculated for the whole sample 
and the 4 farm types. 

Looking at the in- and outputs it becomes evident, that standard farms are on average the largest, 
while integrated farms are by far the smallest. There is a similar trend for organic and integrated or-
ganic farms. While both groups are smaller in terms of inputs and outputs compared to standard farms, 
they are still bigger than integrated farms and integrated organic farms are not that much smaller 
compared to organic farms. These differences in size also manifest in the degree of specialisation of 
the farms, reflected in the share of dairy output from total output. Regarding milk yield, organic and 
both integrated farming groups have a more extensive dairy husbandry system. It is the other way 
around with milk prices. A similar trend can be seen for subsidies. 

Table 2: Descriptive statistics of DEA variables and selected additional variables 

Variable 
Whole 
sample  

(n = 1,583) 

Standard      
(n = 871) 

Integrated 
(n=274) 

Organic 
(n=258) 

Integrated-
Organic  
(n=180) 

Output(s) and inputs of DEA models      
Total output excl. AE subsidies (TEUR) 100.04 (0.63) 118.10 (0.56) 57.72 (0.61) 99.50 (0.57) 77.80 (0.53) 
Milk (t) 162.12 (0.75) 206.06 (0.65) 83.41 (0.58) 142.27 (0.65) 97.81 (0.58) 
Other output (TEUR) 42.55 (0.68) 47.99 (0.62) 30.36 (0.83) 40.63 (0.68) 37.56 (0.65) 
Total output including AE subsidies (TEUR) 106.39 (0.61) 122.98 (0.55) 62.19 (0.60) 109.85 (0.55) 88.44 (0.52) 
Land (ha UAA) 31.02 (0.70) 31.94 (0.58) 24.99 (0.82) 30.37 (0.80) 36.68 (0.84) 
Labour (AWU) 1.95 (0.33) 2.04 (0.31) 1.71 (0.35) 1.93 (0.34) 1.95 (0.34) 
Capital (TEUR) 536.44 (0.54) 574.06 (0.52) 413.52 (0.65) 559.86 (0.50) 507.94 (0.51) 
Intermediate expenses (TEUR) 55.50(0.62) 67.10 (0.55) 31.31 (0.49) 54.71 (0.52) 37.28 (0.46) 
Herd size (LU) 39.05 (0.59) 45.96 (0.54) 25.99 (0.47) 36.03 (0.54) 29.83 (0.54) 

Additional variables  

 

   
Share of dairy output from total output 0.56 (0.27) 0.58 (0.24) 0.49 (0.29) 0.58 (0.26) 0.52 (0.31) 
Milk yield (t/cow) 6.55 (0.23) 7.25 (0.19) 5.51 (0.21) 6.09 (0.21) 5.36 (0.17) 
Milk price (EUR/kg) 0.36 (0.17) 0.34 (0.12) 0.33 (0.09) 0.41 (0.12) 0.40 (0.22) 
Total operational subsidies (TEUR) 21.43 (0.55) 21.30 (0.54) 15.63 (0.53) 25.55 (0.49) 24.95 (0.52) 
Decoupled subsidies (EUR/LSU) 226.10 (0.33) 225.99 (0.31) 240.42 (0.36) 202.08 (0.26) 239.25 (0.42) 
LFA subsidies (EUR/LSU) 152.96 (0.91) 117.90 (0.91) 170.30 (0.75) 202.21 (0.86) 225.65 (0.78) 
RD subsidies excl. LFA and Inv. (EUR/LSU) 191.30 (0.75) 120.80 (0.77) 186.36 (0.63) 305.61 (0.40) 376.10 (0.37) 
Share of dairy cows from total LSU 0.60 (0.17) 0.60 (0.17) 0.57 (0.19) 0.62 (0.16) 0.61 (0.18) 
Share of rented land from total land 0.30 (0.83) 0.34 (0.74) 0.22 (0.91) 0.28 (0.86) 0.25 (1.00) 
Debt ratio 0.12 (1.83) 0.15 (1.67) 0.07 (2.00) 0.13 (1.46) 0.09 (2.22) 
Share of permanent grassland 0.89 (0.17) 0.87 (0.18) 0.86 (0.17) 0.96 (0.08) 0.91 (0.15) 
Share of farms above 600 m 0.57 0.49 0.56 0.76 0.66 

Share of farms in LFA 0.90 0.87 0.89 0.97 0.98 

Note: Values denote means, values in parenthesis denote coefficients of variation (CV). 
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4.3.5.3 Indicators of technical-economic and environmental farm performance 

Table 3 shows results of farm technical-economic and environmental performance indicators. A simple 
comparison of means, based on a one-way analysis of variance (ANOVA) indicates a substantial degree 
of heterogeneity between the 4 farming systems, as the differences are all significant at the 0.1% level.  

Table 3: Mean comparison of technical-economic and environmental performance indicators 

Performance indicators Standard 
(n = 871) 

Integrated 
(n=274) 

Organic 
(n=258) 

Integrated- 
Organic 
(n=180) 

Sig. 

Technical-economic performance indicators      

Private RCR excluding opp. costs 1.21 1.18 1.2 1.3 *** 

Public RCR excluding opp. costs 1.45 1.52 1.54 1.73 *** 

Private RCR including opp. costs 0.65 0.5 0.61 0.57 *** 

Public RCR including opp. costs 0.77 0.64 0.77 0.75 *** 

Market orientation 0.83 0.77 0.78 0.75 *** 

Equity ratio 0.92 0.99 0.92 0.96 *** 

Output (EUR) per ha of UAA  3,924.2 2,570.88 3,694.44 2,489.05 *** 

Output (EUR) per AWU 58,163.19 35,390.99 51,828.42 40,877.35 *** 

Output (EUR) in relation to assets 0.22 0.16 0.19 0.16 *** 

Output (EUR) in relation to intermediate exp. 1.77 1.81 1.83 2.08 *** 

Output (EUR) per LSU 2,623.67 2,271.01 2,781.36 2,736.83 *** 

Gross farm income (EUR) per AWU 34594.62 25116.54 36353.64 34743.62 *** 

Farm net value added (EUR) per AWU 21784.09 15420.03 23737.44 23791.47 *** 

Farm net income (EUR) per AWU 17519.31 12751.43 19860.98 20990.74 *** 

Eff. model 1 (output in EUR) 0.62 0.55 0.59 0.59 *** 

Eff. model 2 (kg milk and other output in EUR) 0.71 0.63 0.62 0.62 *** 

Environmental performance indicators          

Stocking density (LSU/ha) 1.77 1.37 1.37 1.04 *** 

Veterinary expenses (EUR / cow) 108.9 82.99 92.01 64.41 *** 

Fertiliser costs per ha (EUR) 61.81 25.88 15.58 8.59 *** 

Crop protection costs per ha (EUR) 16.86 9.58 1.08 1.59 *** 

Concentrate feed costs per ha (EUR) 485.19 265.41 487.49 256.21 *** 

RD subsidies (excl. LFA and Inv.) (EUR/ha) 120.8 186.36 305.61 376.1 *** 

Eff. model 3 (output incl. RD subsidies in EUR) 0.62 0.56 0.62 0.63 *** 

Note: Sig. indicates a statistically significant difference based on a oneway ANOVA with ***, **, *, and denoting the 0.1%, 
1%, 5% and 10% level, respectively.  

However, as a simple comparison of means might be biased, we will focus primarily on ATTs after 
matching. Structural differences between the groups were considered in terms of farm size (measured 
by standard output), site conditions (proxied by LFA payments per LSU and the share of permanent 
grassland) and a dummy for the year 2014 (matched farms had to be from the same year). Results are 
depicted in Table 4. In the upper part of the table, means of the matching variables before and after 
matching show that structural differences between the groups were successfully eliminated by match-
ing. However, this comes at a cost, as at the same time the number of matched farms decreased sig-
nificantly. One may say this reduction in sample size is problematic as it biases our matched sample, 
but at the same time this allows us to compare farms of the different farming systems of similar size 
and facing similar site conditions.  
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Table 4: Comparison of matching variables and ATT of technical-economic and environmental performance indicators between groups 

 Means 
Conv|Int Sig. Means 

Conv|Org Sig. Means 
Conv|Int_Org Sig. Means 

Int→Org Sig. Means 
Int|Int_Org Sig. Means 

Org|int_Org Sig. 

Standard output (TEUR) before matching 88.6|50.6 *** 88.6|70.4 *** 88.6|60.4 *** 50.6|70.4 *** 50.6|60.4 *** 70.4|60.4 ** 
Standard output (TEUR) after matching 49.6|49.8 . 55.7|55.8  49.8|50.2  44.2|44.1  40.5|40.5  44.3|44.6  
LFA subsidies (TEUR) before matching 4.1|3.8 ** 4.15|5.6 *** 4.1|5.6 *** 3.8|5.6  3.8|5.6 *** 5.6|5.6  
LFA subsidies (TEUR) after matching 4.2|4.2  4.92|4.9  4.8|4.8  5.0|5.0  4.9|5.0  5.2|5.2  
Share of perm. grassland before matching 0.87|0.86 * 0.87|0.96 *** 0.87|0.91 *** 0.86|0.96 *** 0.86|0.91 *** 0.96|0.91 *** 
Share of perm. grassland after matching 0.96|0.96  0.99|0.99  0.99|0.99  0.99|0.99  0.98|0.98  0.99|0.99  
Number of farms in each group 871|274  871|258  871|180  274|258  274|180  258|180  
Number of matched farms 76  103  60  39  29  42  

Performance indicators ATT 
Conv→Int Sig. ATT 

Conv→Org Sig. ATT 
Conv→Org_Int Sig. ATT 

Int →Org Sig. ATT 
Int→Int_Org Sig. ATT 

Org→int_Org Sig. 

Technical-economic performance indicators 
Private RCR excluding opp. costs 0.11 *** 0.04 * 0.18 *** -0.08 *** 0.07 *** 0.16 *** 
Public RCR excluding opp. costs 0.20 *** 0.12 *** 0.37 *** -0.06 *** 0.16 *** 0.24 *** 
Private RCR including opp. costs -0.03 *** 0.00  0.00  0.01  0.03 *** -0.01  
Public RCR including opp. costs -0.02 . 0.04 *** 0.06 *** 0.02 *** 0.06 *** 0.00  
Market orientation -0.03 *** -0.04 *** -0.07 *** -0.02 *** -0.03 *** -0.02 *** 
Equity ratio 0.02 ** 0.00  0.01  -0.03 *** -0.03 *** 0.09 *** 
Output (EUR) per ha of UAA  -1,046 *** -555 *** -1,745 *** 626 *** -359 *** -1,079 *** 
Output (EUR) per AWU -6,962 *** -253  -1,744 . 3,079 *** 3,613 *** -5,823 *** 
Output (EUR) in relation to assets  -0.03 *** -0.01 . -0.02 *** 0.03 *** 0.01 ** -0.01 *** 
Output (EUR) in relation to interm. exp.  0.24 *** 0.10 *** 0.38 *** -0.16 *** 0.23 *** 0.34 *** 
Output (EUR/LSU) -243 *** -45  -117 * 144 *** 216 *** -82  
Gross farm income (EUR/AWU) -512  4,846 *** 8,686 *** 860 * 6,677 *** 231  
Farm net value added (EUR/AWU) 470  4,353 *** 8,723 *** 215  5,839 *** 1,095  
Farm net income (EUR/AWU) 1,154 . 2,980 *** 9,068 *** 438  6,099 *** 998  
Eff. model 1 (output in EUR) 0.00  0.01  0.02 *** -0.02 *** 0.03 *** 0.03 *** 
Eff. model 2 (kg milk and other output in EUR) -0.03 *** -0.07 *** -0.07 *** -0.02 *** -0.01 * 0.03 *** 
Environmental performance indicators 
Stocking density (LSU/ha) -0.31 *** -0.21 *** -0.63 *** 0.14 *** -0.25 *** -0.33 *** 
Veterinary expenses (EUR / cow) -39 *** -33 *** -67 *** 39 *** -24 *** -13 *** 
Fertiliser costs EUR/ha) -20 *** -4.85 ** -20 *** -0.42  -5.91 *** -6.63 *** 
Crop protection costs EUR/ha) 0.85  -3.72 *** -2.90 *** -3.73 *** -2.48 *** -0.12 *** 
Concentrate feed costs (EUR/ha) -201 *** -11  -285 *** 196 *** -65 *** -212 *** 
RD subsidies (excl. LFA and Inv.) (EUR/ha) 66 *** 158 *** 254 *** 95 *** 169 *** 89 *** 
Eff. model 3 (output incl. RD subsidies in EUR) 0.00  0.03 *** 0.07 *** 0.00  0.06 *** 0.05 *** 

Note: sig. indicates a statistically significant difference of ATT with ***, **, *, and . indicating significance at the 0.1%, 1%, 5% and 10% level, respectively. 



  

LIFT – Deliverable D3.1  
 

178 
 

ATTs in the lower part of the table were calculated by comparing each of the groups pairwise to one 
another, whereby the less ecological farming system was always defined as the control group and the 
more ecological farming system as the treated group. A positive ATT thus indicates that the respective 
indicator increases, when switching to a more ecological farming system, while a negative ATT indi-
cates the opposite. This results in a total of 6 comparisons, namely (a) standard → integrated, (b) 
standard  → organic, (c) standard  → integrated organic, (d) integrated → organic, (e) integrated → in-
tegrated organic and (f) organic → integrated organic. These comparisons are able to identify perfor-
mance gaps between the different farming systems for the performance indicators. 

Overall, the standard integrated farming system tends to perform worse compared to the other 
groups. While this farming system performs better in terms of environmental performance compared 
to the standard system, it performs worse, when looking at technical economic performance. In con-
trast, organic and integrated organic farming systems can compete with standard farms in terms of 
profitability, especially, if subsidies are included. At the same time, these farming systems also perform 
better in terms of environmental performance than the standard system and also than the integrated 
system. Switching from organic to an integrated organic farming system does not lead to further eco-
nomic drawbacks, while environmental performance clearly increases further. 

Up until now, we have assumed that all farms operate under the same production technology, when 
comparing efficiencies between the groups. Table 5 shows efficiency results, if we assume different 
production technologies for each group instead. For standard farms, most of the inefficiency is due to 
inefficiency within their respective groups, and the MTRs are consequently very high for all 3 models. 
For the other farming systems, more inefficiency is attributable to a potential technology gap, as is 
visible by the lower MTRs.  

Table 5: Comparison of group efficiencies, metatechnology ratios and metafrontier efficiencies 

Efficiency measure Standard 
(n = 871) 

Integrated 
(n=274) 

Organic 
(n=258) 

Integrated- 
Organic 
(n=180) 

 

Efficiency with respect to group frontier      

Eff. model 1(output in EUR) 0.65 0.60 0.68 0.66  

Eff. model 2 (kg milk and other output in EUR) 0.73 0.72 0.75 0.77  

Eff. model 3 (output incl. RD subsidies in EUR) 0.66 0.62 0.69 0.69  

Metatechnology ratio (MTR)      

Eff. model 1(output in EUR) 0.96 0.92 0.86 0.89  

Eff. model 2 (kg milk and other output in EUR) 0.98 0.88 0.83 0.81  

Eff. model 3 (output incl. RD subsidies in EUR) 0.94 0.90 0.90 0.92  

Efficiency with respect to metafrontier      

Eff. model 1(output in EUR) 0.62 0.55 0.59 0.59  

Eff. model 2 (kg milk and other output in EUR) 0.71 0.63 0.62 0.62  

Eff. model 3 (output incl. RD subsidies in EUR) 0.62 0.56 0.62 0.63  

 

4.3.5.4 Drivers of technical-economic and environmental farm inefficiency 

Table 6 shows the results of double bootstrap truncated regression analysis of drivers with respect to 
efficiencies related to the respective group frontiers. This leads to a total of 12 regression models, one 
for each DEA model and farming system. As the regression analyses are calculated with the actual 
output orientated efficiency measures (which is in fact an inefficiency score) and not their inverse, a 
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positive sign of coefficients in these models indicates a negative effect on efficiency, whereas a nega-
tive sign of coefficients indicates a positive effect on efficiency. 

Table 6: Results of second stage analysis of drivers of farm inefficiency 

Model description Standard 
(n = 871) 

Integrated 
(n=274) 

Organic 
(n=258) 

Integrated- 
Organic 
(n=180) 

Variable Coefficients and statistical significance levels 

Model 1 (Total output excluding subsidies) 

Intercept 3.413 * 4.237  -8.243  -6.188  

Share of permanent grassland 0.034  -0.158  2.836  1.919 * 

Decoupled subsidies (EUR/LSU) -0.223 * 0.075  0.653  0.263  

LFA subsidies (EUR/LSU) 0.102 * 0.081  0.575 * 0.209  

RD subsidies excl. LFA and Inv. (EUR/LSU) 0.059 * -0.007  -0.194  -0.188  

Share of dairy cows from total cattle -0.298 * -0.673 * -2.281 * -0.618 * 

Share of rented land -0.087 * 0.009  -0.075  0.027  

Debt ratio 0.001  0.057  0.087  -0.095  

Dummy year 2014 -0.295 * -0.101  -0.051  -0.04  

Model 2 (Milk output and other output) 

Intercept 6.486 * 7.391 * 2.732  2.985 * 

Share of permanent grassland -0.165 * -0.297  0.58  0.597 * 

Decoupled subsidies (EUR/LSU) -0.152 * -0.089  0.13  -0.174  

LFA subsidies (EUR/LSU) 0.058 * 0.018  0.132 * -0.014  

RD subsidies excl. LFA and Inv. (EUR/LSU) 0.036 * 0.061  0.132  0.306 * 

Share of dairy cows from total cattle -0.928 * -1.131 * -1.513 * -1.277 * 

Share of rented land -0.043 * -0.034 * -0.022  0.016  

Debt ratio 0.007  0.038  0.039 * 0.002  

Dummy year 2014 -0.16 * -0.088  -0.12 * -0.137 * 

Model 3 (Total output including subsidies)) 

Intercept 3.474 * 4.728 * -0.451  -4.229  

Share of permanent grassland 0.011  -0.325  0.805  1.325 * 

Decoupled subsidies (EUR/LSU) -0.185 * 0.045  0.255  0.151  

LFA subsidies (EUR/LSU) 0.077 * 0.046  0.184 * 0.12  

Share of dairy cows from total cattle -0.254 * -0.542 * -0.993 * -0.44  

Share of rented land -0.079 * 0.01  -0.059 * 0.011  

Debt ratio -0.001  0.053  0.037  -0.056  

Dummy year 2014 -0.266 * -0.184  -0.126  -0.073  

Note: * indicates that the 2.5% and 97.5% confidence interval of the respective coefficient does not contain zero. 

It is clearly visible that standard farms have the highest number of statistically significant drivers 
throughout all models. However, this may be also related to the higher number of observations in this 
group, compared to the others. For this group, higher decoupled subsidies are associated with higher 
efficiency, whereas higher LFA and RD subsidies are associated with lower efficiency. Interestingly, in 
model 2, a higher share of grassland is also related to higher efficiency scores. A higher share of dairy 
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cows from total livestock units, indicates a higher degree of specialisation of dairy farms and is conse-
quently also related to higher efficiency. The same is true for the share of rented land. Finally, the 2014 
dummy indicates that this year was more productive, than 2015. 

For the other farming systems, less drivers are significant throughout the models. One variable, namely 
the share of dairy cows, shows a positive relation to efficiency throughout all farming systems and 
models, except for integrated organic farms in model 3. There are no clear trends throughout the 
farming systems and models for the other drivers. For integrated farms the share of rented land has a 
positive effect on efficiency in model 2. The other drivers are not significant for integrated farms. LFA 
subsidies again show a negative effect on efficiency for organic farms in all models. In model 2 a higher 
debt ratio is also associated with lower efficiency, whereas the dummy for the year 2014 has a positive 
effect on efficiency. Additionally, in model 3 a higher share of rented land has a positive effect on 
efficiency. Finally, we look at the results for integrated organic farms. Here, a higher share of perma-
nent grassland shows a negative effect on efficiency in all three models. Additionally, in model 2, a 
higher level of RD subsidies is also associated with lower efficiency. 

4.3.6 Discussion and conclusions 

In terms of data source, we want to point out two issues. Firstly, FADN data provides only limited data 
on environmental performance of farms and we thus relied on proxies. In the medium to long run it 
would thus be very beneficial to add more environmental data in FADN, which are already collected 
for other purposes (e.g. in the IACS). For example, it would already be very beneficial to better differ-
entiate grassland areas in terms of their intensity of use (e.g. number of cuts).  

A second issue is that the land variable in our analysis, measured as hectare of UAA is problematic, 
when farms have large shares of their land in disadvantaged mountainous areas (e.g. alpine pastures, 
or other very extensive grasslands). In Austrian FADN data, such areas are multiplied with a reduction 
factor smaller than one, leading to a reduced measure of farm size in terms of land, which better re-
flects the biophysical production possibilities. Direct payments are also based on this reduced land 
measure. Adding a similarly adapted land variable to the European FADN data would certainly also be 
beneficial for future analyses of farm performance with FADN data. 

Overall, our results reveal potential synergies and trade-offs in terms of economic and environmental 
performance of the identified farming systems and of switching to a more ecological farming system. 
In general, both identified integrated farming systems can be seen as more extensive forms of produc-
tion, compared to standard farms and organic farming systems, respectively. However, the standard 
integrated farming system performs overall worse compared to the other groups. While this farming 
system performs better in terms of environmental performance compared to the standard system, it 
performs worse, when looking at technical economic performance. In contrast, organic and integrated 
organic farming systems can compete with standard farms in terms of profitability, especially, if subsi-
dies are included. At the same time, these farming systems also perform better in terms of environ-
mental performance than the standard system and also than the integrated system. Switching from 
organic to an integrated organic farming system does not lead to further economic drawbacks, while 
environmental performance increases clearly further.  

In terms of drivers, our results show that worse site conditions, measured via the share of permanent 
grassland and LFA subsidies, are negatively related to efficiency in particular for the more intensive 
standard and organic farming systems. RD subsidies (not including LFA subsidies) only show a negative 
effect on efficiency for standard and integrated organic farming systems. An overall effect is that a 
higher specialisation, proxied by the share of dairy cows from total LSU increases efficiency. 
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Based on these findings we can draw the following conclusions in terms of policy recommendations: 
Our results indicate that adoption of the identified farming systems is strongly related to site condi-
tions (only a small number of farms remained for matching, when controlling for site conditions and 
time), which cannot be influenced by policies. Consequently, the economic viability of more ecological 
farming systems depends also on public payments, compensating farms for natural disadvantages and 
the provision of public goods. However, in Austria these latter non-market outputs of ecological farm-
ing systems are also an asset, reflected in higher market prices and generally high consumer demand. 
Establishing markets for ecological products can thus reduce the dependency on public support and 
can be a further incentive for more conventional farms to switch to a more ecological farming system. 
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4.4.1 Introduction 

There is an agreement that higher crop diversity contributes to increasing the productivity of ecosys-
tems and that it is therefore beneficial for sustainable crop production (Cardinale et al. 2012). This is 
broadly acknowledged in the ecological perspective for “sampling effect” and “complementarity ef-
fect”. Sampling effect means that growing more diverse crop species will increase the probability of 
growing the best-adapted species, for example, different crop species have different root systems and 
therefore improve the efficiency in soil nutrient up taking (Tilman, Polasky and Lehman 2005; Clark 
and Tilman 2017). Complementarity effect can be interpreted as crop diversity can facilitate the man-
agement of different crop species planted by using the different characteristics (Loreau and Hector 
2001), for example, different crops require different management and therefore production inputs 
such as labour and technical factors are optimised. Furthermore, crop diversity supports farm resili-
ence by diversifying the biological risk in farms; in this way pests and diseases are easier to control 
because different planting seasoning. Crop diversity can also enhance the farm ability for maintain the 
production under climate change (Di Falco and Chavas 2008; Di Falco and Chavas 2006). However, 
earlier research has also shown that changes in crop diversification can decrease the income (e.g. Lou-
hichi et al., 2017; Cimino et al., 2015; Cortignani and Dono, 2015). The effects of crop diversity in crop 
production described above motivate us to incorporate a measure of crop diversity to the measure-
ment of the Eco-efficiency for cropland farms. 

Eco-efficiency accounts two dimensions of sustainability: the economic performance and ecological 
performance, which lead to heating empirical analysis in recent decade. The first formal definition of 
eco-efficiency was defined by the World Business Council for Sustainable Development (WBCSD) in the 
beginning of the 1990s (WBCSD, 1992) as the ratio of reduced environmental impact in relation to 
increased value of production. Following this research thread, the idea of eco-efficiency has been ap-
plied in measuring the relationship between economy and environment, in terms of eco-efficiency of 
different production units (e.g. public sectors, firms and household). Environmental impact, environ-
mental pressure, or environmentally detrimental inputs and bad outputs such as pollution are treated 
as either inputs or outputs into the production process (Pittman 1983; Reinhard, Lovell and Thijssen 
2002; Färe et al. 2005; Färe et al. 2008; Huang, Bruemmer and Huntsinger 2016; Beltrán-Esteve, Reig-
Martínez and Estruch-Guitart 2017; Tsionas 2020). One type of eco-efficiency is measured as produc-
tion value per unit of environmental impact, or as the environmental impact per unit of production 
value. For example, eco-efficiency equals the ratio of economic value added to environmental pressure 
(Picazo-Tadeo, Beltrán-Esteve and Gómez-Limón 2012) or environmental damage (Kuosmanen and 
Kortelainen 2005). Another type of eco-efficiency is defined as the weighted average of production 
efficiency, waste water efficiency and waste gas treatment efficiency (Shao, Yu and Feng 2019). Over-
all, eco-efficiency is used to express the ability to maximize the relationship between economic value 
added and environmental pressure (Huppes and Ishikawa 2005; Hoang 2011). In this paper we define 



  

LIFT – Deliverable D3.1  
 

183 
 

the eco-efficiency (ECO-E) as ecologically adjusted production efficiency by incorporating the dynamic 
crop diversity variables into the production function using directional distance function.  

The directional distance function approach to efficiency measurement was first proposed by Chung et 
al. (1997) and Chambers et al. (1998) based on Shephard (1970). It has gained popularity over the 
recent decades (Färe et al. 2005; Färe and Karagiannis 2013; Ma et al. 2014; Tang et al. 2016). The 
directional distance function allows for directional efficiency measurement, i.e., the researcher is not 
limited to the commonly employed efficiency concept of simultaneous proportional reductions in in-
puts or expansion of outputs. The advantages of the directional distance function are the parametric 
structure that allows derivatives of relative shadow prices of nonmarket goods and elasticities of com-
plementary or substitutionary relationships among outputs (Blackorby and Russell 1989; Morrison Paul 
and Nehring 2005; Serra, Lansink and Stefanou 2011; Huang and Bruemmer 2017).  

We incorporate the crop diversity index lagged by two years (CDIt-2) as an input and an index of crop 
diversity loss in current year the Herfindahl index (HI), as an undesirable output to the production 
function. In other words, the HI is treated as a by-product in the production function. The novel frame-
work applied in this paper implies measuring the ECO-E by incorporating the dynamic effects of crop 
diversity to the production function. Most previous studies have neglected the relevant dynamic im-
plications of crop diversity on productivity, although Cardinale, Ives and Inchausti (2004) explained the 
effect of crop diversity on productivity as “dynamic”, and “growing stronger through successional 
time”. Crop diversity has been found positively related with the production both in current and in 
lagged effects (Di Falco and Chavas 2008).  

An unbalanced panel of data for 209 farms covering 937 observations from the Swedish Farm Account-
ing Data Network (FADN) database for the period 2009-2016 is used. We also analyse the ECO-E over 
the region and crop rotations. Integrating dynamic effects of CDI into ECO-E is expected to lead to an 
improved understanding of the relationship between ecological performance and production revenue, 
and thus the research can be instructive for adjustments in policy interventions aimed at enhancement 
of farmers livelihood and environment protection.  

4.4.2 Theoretical background: dynamic effects of crop diversity in crop production 

Crop diversity stabilised its crucial role in agricultural production, with higher crop diversity improving 
the crop production; in particular the productive value of biodiversity that crop diversity increases crop 
yields has been emphasised (Bareille and Letort 2018). Crop diversity has a production value which 
functions as production factors on the system, instead of external determinants (Chavas and Falco 
2012). We depart from the assumption that crop diversity can be considered to contribute to the pro-
duction dynamically as both input and output, and that the analysis would be biased if we considered 
crop diversity only as input or output in the production function. In this paper we assume the crop 
diversity plays its dynamic role as input and output in the production process using two assumptions: 
1: crop diversity in previous years contributes to the production process as an input, and 2: crop diver-
sity is a by-product of crop production; this means crop diversity contributes to the production process 
as an output. A similar assumption of the dynamic role of crop diversity has been discussed in a dy-
namic acreage farm-level model (Bareille and Letort 2018), where they proposed that farmers manage 
their crop diversity as productive capital. 

We posit that crop diversity in previous years function as a production factor in the current year (as-
sumption 1). Let us assume that the farmer use a nonnegative vector of inputs 𝑥𝑥 = (𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑁𝑁) ∈
𝑅𝑅+𝑁𝑁 to produce a nonnegative vector of outputs 𝑦𝑦 = (𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑀𝑀) ∈ 𝑅𝑅+𝑀𝑀, then the production tech-
nology is denoted by 𝐺𝐺𝑅𝑅 = {(𝑦𝑦, 𝑥𝑥): 𝑥𝑥 𝑠𝑠𝐹𝐹𝐹𝐹 𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝𝑢𝑢𝑠𝑠𝑠𝑠 𝑦𝑦}. Assuming the input set of production technol-
ogy is 𝐿𝐿(𝑦𝑦), 𝐿𝐿(𝑦𝑦) = {𝑥𝑥: (𝑦𝑦, 𝑥𝑥) ∈ 𝐺𝐺𝑅𝑅}, then input sets 𝐿𝐿(𝑦𝑦) satisfy the properties of nonnegative, closed 
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set, finite, weak monotonicity, and strong monotonicity when necessary (Kumbhakar and Lovell 2000). 
Theoretically, crop diversity satisfies the properties of input. Empirically, crop diversity has been 
treated as an input in the literature. In this respect, Smale et al. (1998) found the number of crop 
species to be associated with higher yield by analysing the relationships between crop diversity and 
wheat production in Pakistan. Di Falco and Perrings (2005) found a positive relationship between crop 
diversity and agricultural production studying on cereal production in Italy. Di Falco and Chavas (2006) 
treated the genetic diversity as an input in the production technology and found that crop genetic 
diversity could increase farm productivity and reduce risk exposure. This relates to our first assump-
tion. Bareille and Letort (2018) considered the productive capacity of crop biodiversity as a quasi-fixed 
input in their acreage farm level model.  

We posit that crop diversity contributes to crop production process as an output in the assumption 2. 
Let us assume the output sets of production technology 𝑃𝑃(𝑥𝑥) = {𝑦𝑦: (𝑦𝑦, 𝑥𝑥) ∈ 𝐺𝐺𝑅𝑅, then the nonnegative, 
closed, bounded output sets 𝑃𝑃(𝑥𝑥) would satisfy the strong, or free, disposability of inputs and outputs, 
and a convexity property (Kumbhakar and Knox Lovell, 2000). Theoretically, crop diversity does not 
conflict the properties. As “reverse output” of crop diversity in the production function, we use HI as 
undesirable output because the magnitude had an opposite effect to the good output of crop diversity, 
which is consistent with literature (Lewis and Sexton 2004). Theoretically, HI meets the regularity con-
ditions21 of undesirable output. Empirically, HI is an ecological index for expressing a monoculture, 
which makes it reasonable to introduce HI as undesirable byproduct from crop production in arable 
land.  

4.4.3 Data and model specification 

4.4.3.1 Data 

The empirical data used here is an unbalanced panel of data for 209 individual farms and a total of 937 
observations of cropland farms (specialist cereals, oilseeds and protein crops, general field cropping, 
and mixed cropping) obtained from the Swedish farm accounting data network (FADN) for the period 
2009-201622 (Table 1). The economic output (y) is the total revenue of agricultural products from the 
arable land, measured in Swedish Kronor (SEK). The classic economic inputs of the production function 
are: arable land area size (𝑥𝑥1), in ha; labour (𝑥𝑥2), in working hours per year; fixed cost (𝑥𝑥3), measuring 
fixed asset input in the agricultural production, in SEK; intermediate cost (𝑥𝑥4), representing the variable 
cost excluding the cost for chemical inputs i.e. fertiliser and pesticide, in SEK; and cost of chemicals 
(𝑥𝑥5) in SEK. All variables represent the economic output and the inputs for the production function 
were calculated based on standard FADN definitions (European Commission, 2018). The arable land 
for agricultural production is located mainly in the South and North Sweden, thus we use the arable 
land located in the South and North with region code 710 and 730 in FADN database.   

In addition to the economic variables of the production function, we use the HI (b) (Malik and Singh 
2002) in current year as a bad output, and the CDI in the past two years (t-2) (𝑥𝑥6) as an input for the 

                                                           
21 For modeling technology producing undesirable by-products, two axioms of null-jointness and weak disposa-
bility are required for the output (Färe et al. 1997, 2005; Huang et al., 2018). Null-jointness means that good 
output can only be produced if some undesirable output is produced, that can be interpreted that no undesirable 
output produced means no good output produced. Weak disposability requires that simultaneous reduction of 
good output and undesirable output is feasible, which means there is cost to reduce production of undesirable 
output.  
22 The crop diversity index in the past two years was calculated using data from 2007 to 2014. 
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production function w.r.t. the ecological side. The HI is defined as 𝐻𝐻𝐼𝐼 = ∑ 𝑃𝑃𝑖𝑖2𝑛𝑛
𝑖𝑖=1 , where 𝑃𝑃𝑖𝑖 is the pro-

portion of area planted by the crop 𝐹𝐹: 𝑃𝑃𝑖𝑖 = 𝐴𝐴𝑖𝑖
∑ 𝐴𝐴𝑖𝑖𝑛𝑛
𝑖𝑖=1

, 𝐴𝐴𝑖𝑖  is the area of the crop 𝐹𝐹, 𝐹𝐹 is each of the crops 

such as ley, barley, wheat, oat etc. HI was used as a spatial diversity by Smale et al. (2008) in wheat 
production, where spatial diversity refers to the area distribution of varieties. A HI value of 1 indicates 
that the farm planted a single crop i.e. a monoculture, while a value of 0 indicates that a large number 
of crop varieties were planted in the farm i.e. multiculture. CDI is defined as 𝐶𝐶𝐶𝐶𝐼𝐼 = 1 −𝐻𝐻𝐼𝐼. The CDI is 
directly related to the diversification in the farm by taking into account the area devoted to each crop, 
and ranges between 0 and 1, the greater the number of CDI, the higher degree of crop diversification. 
Whereas, the greater the number of HI, the higher the degree of monoculture in the arable land. As 
we explained in assumption 1, the crop diversity of the previous year is expected to increase the cur-
rent production (Di Falco and Chavas, 2008); that led us to apply the crop diversity in previous two 
years (𝐶𝐶𝐶𝐶𝐼𝐼𝑖𝑖−2) as an input in the production function. We applied a robustness test to see how many 
years lagged in previous years can affect the production most significantly, and we get the lagged year 
of 2 is the most significant statistically. The mean of 𝐶𝐶𝐶𝐶𝐼𝐼𝑖𝑖−2 and 𝐶𝐶𝐶𝐶𝐼𝐼 in current year were 0.79 with a 
standard deviation (Std. Dev.) as 0.18.  

Table 1: Descriptive statistics of variables 

Variable Description Symbol Unit Mean Std. Dev. 
Continuous variables     

Cropland area x1 ha 109.93 105.2 
Labour x2 working hours 2927.86 3083.95 
Fixed cost x3 1000 SEK 769 1440 
Intermediate cost without chemicals (fer-
tiliser and pesticides) x4 1000 SEK 192 3380 

Cost of chemicals (fertiliser and pesticide) x5 1000 SEK 421 570 
CDI two years before, CDIt-2 x6 - 0.801 0.19 
Total revenue of agricultural outputs y 1000 SEK 2260 3450 
CDI in current year  - 0.79 0.21 
HI b - 0.21 0.79 
Dummy variables      Obs. no. of 1 Obs. no. of 0 
Main crop change (1 = at least the main crop has 
been changed in past years, 0 = otherwise) d1   262 675 

Year dummy of policy shock (1 = year later than 
2013, 0 = otherwise) d2   672 265 

 

For the environmental side, we have also included a dummy variable of main crop change (d1) and a 
year dummy of policy shock (d2). Main crop means the largest planted area of a single crop for each 
observation in the sample. The dummy variable of main crop change equals to 1 means at least the 
main crop has been changed in past years, it equals to 0 otherwise. The year dummy of policy shock is 
set to be 2014, that means the year dummy equals to be 1 for cropping after 2014, and 0 otherwise. 
The crop diversification measure was introduced by the 2013 Common Agricultural Policy (CAP) reform 
as part of CAP “greening” (crop diversification together with maintenance of permanent pasture, eco-
logical focus areas) (European Union, 2013). The measure was targeted to land allocation at farm level, 
with the aim to enhance the ecological performance of the EU agricultural sector, and to generate 
environmental public goods to the society. Arable, monoculture farms were the implicit target of the 
reform. To comply with this measure, farmers had to delimit the proportion of the main crop. Non-
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compliance with the measure implied restriction in direct payments (30% of the farmers’ direct pay-
ments are conditional on the “greening”).  
Crop rotation is alternating annual crops grown on a specific field in a planned pattern or sequence in 
successive crop years for risk diversification in the farm. The crop rotation can take the advantage of 
different root systems of crops to improve soil nutrients taking and improve the soil quality. However, 
because we cannot identify the land parcel of a specific crop on an individual farm from the FADN 
database, we instead investigate the main crop change to reflect the practice of crop rotations. Com-
paring the planting area of crops, the first three main crop types in Sweden are ley (45%), wheat (20%), 
and corn (18%). Thus, grass for ley takes the largest area in more than half farms, followed by barley 
and wheat. We generated a dummy variable of whether the largest planted crop area changes in each 
farm, and we found 262 farms changed the first main crop at least once from 2009 to 2016, we as-
sumed this is also an indicator of crop rotation.  

4.4.3.2 Model specification 

Following Chambers et al. (1998; 2002) and Färe et al. (2005), we first build the output oriented direc-
tional distance function. The advantage of the output oriented directional distance function is that it 
allows us to expand the desirable output of agricultural revenue while contracting the undesirable 
output HI holding inputs unchanged, as shown in Figure 1. Assuming point A is the production point of 
a farm, then the farmer improves production along the directional vector 𝑔𝑔 = �𝑔𝑔𝑦𝑦,−𝑔𝑔𝑏𝑏�, that is add-
ing  𝜗𝜗𝑔𝑔𝑦𝑦 to desirable output while subtracting 𝜗𝜗𝑔𝑔𝑏𝑏 from the undesirable output. The directional dis-
tance function is shown as equation (1): 

𝐶𝐶𝑜𝑜����⃗ �𝑥𝑥,𝑦𝑦, 𝑏𝑏;𝑔𝑔𝑦𝑦,−𝑔𝑔𝑏𝑏� = 𝑠𝑠𝑢𝑢𝑝𝑝�𝜗𝜗: (𝑦𝑦 + 𝜗𝜗𝑔𝑔𝑦𝑦,𝑏𝑏 − 𝜗𝜗𝑔𝑔𝑏𝑏) ∈ 𝑃𝑃� (1) 

while satisfying the translation property, it can be denoted as equation (2):   

𝐶𝐶𝑜𝑜����⃗ �𝑥𝑥,𝑦𝑦, 𝑏𝑏;𝑔𝑔𝑦𝑦,−𝑔𝑔𝑏𝑏� − 𝜗𝜗 = 𝐶𝐶𝑜𝑜����⃗ �𝑥𝑥,𝑦𝑦 + 𝜗𝜗𝑔𝑔𝑦𝑦, 𝑏𝑏 − 𝜗𝜗𝑔𝑔𝑏𝑏;𝑔𝑔𝑦𝑦,−𝑔𝑔𝑏𝑏� (2) 

We parametrically estimate the directional distance using stochastic estimation methods following 
Kumbhakar and Lovell (2000), when 𝐶𝐶𝑜𝑜����⃗ �𝑥𝑥,𝑦𝑦, 𝑏𝑏;𝑔𝑔𝑦𝑦,−𝑔𝑔𝑏𝑏� is assumed to be 0 and error term 𝜀𝜀𝑖𝑖 = 𝑣𝑣𝑖𝑖 −
𝑢𝑢𝑖𝑖 is added, then empirical stochastic specification form based on equation (2) is written in equation 
(3) after fulfilling the translation property and symmetry condition, and assuming 𝑔𝑔 = �𝑔𝑔𝑦𝑦,−𝑔𝑔𝑏𝑏� =
(1,−1). In our case, we impose these restrictions by choosing 𝜗𝜗𝑖𝑖 = 𝑏𝑏𝑖𝑖, then the quadratic form of the 
empirical specification for ECO-E measurement is below: 

𝐶𝐶𝑜𝑜����⃗ (𝑥𝑥, y, 𝑏𝑏; 1,−1)

= 𝛼𝛼0 + �𝛼𝛼𝑖𝑖𝑥𝑥𝑖𝑖

6

𝑖𝑖=1

+ 𝛽𝛽1𝑦𝑦 + 𝛾𝛾1𝑏𝑏 +
1
2
�𝛼𝛼𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖)2 +
6

𝑖𝑖=1
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2
𝛽𝛽2(y)2 +
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2
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𝑖𝑖=1
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(3) 

−𝑏𝑏𝑖𝑖 = 𝐶𝐶𝑜𝑜����⃗ (𝑥𝑥,𝑦𝑦𝑖𝑖∗, 0) + 𝑣𝑣𝑖𝑖 − 𝑢𝑢𝑖𝑖

= 𝛼𝛼0 + �𝛼𝛼𝑖𝑖𝑥𝑥𝑖𝑖
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Where in, 𝑦𝑦𝑖𝑖∗ = 𝑦𝑦𝑖𝑖 + 𝑏𝑏𝑖𝑖, 𝑦𝑦𝑖𝑖  describes the desirable output of agricultural products revenue, 𝑏𝑏𝑖𝑖 denotes 
the undesirable output HI. Inputs 𝑥𝑥𝑖𝑖 represent 𝑥𝑥1 (arable land area), 𝑥𝑥2 (labour), 𝑥𝑥3 (fixed cost), 𝑥𝑥4 
(intermediate cost excluding the cost chemicals (i.e. pesticide and fertiliser)), 𝑥𝑥5 (cost of chemicals), 
and  𝑥𝑥6 (CDI two years ago (𝐶𝐶𝐶𝐶𝐼𝐼𝑖𝑖−2)). 𝑣𝑣𝑖𝑖 is a random error term, intended to capture events beyond 
the control of the farmers and 𝑢𝑢𝑖𝑖 is a non-negative random error term, intended to capture production 
inefficiency.  

Based on duality between the distance function and cost or revenue function (input distance function 
for cost minimisation function, output distance function for revenue maximisation function), relative 
shadow prices for HI can be derived (Shephard 1970; Färe and Primont 1996).  

 

Figure 1: Directional distance function framework 

 

4.4.4 Results and discussion 

Before presenting the results from the directional distance function, we used likelihood ratio tests for 
evaluating model performance, all tests confirm that the current model setting is appropriate for our 
data.  

4.4.4.1 Parameter estimates and elasticity of eco-efficiency to inputs  

The directional distance function using maximum likelihood is presented in Table 3, with all variables 
divided by mean. Most coefficients are statistically significant. The directional output distance function 
is concave in outputs, thus 𝜕𝜕2(𝐶𝐶𝑜𝑜����⃗ (𝑥𝑥,𝑦𝑦, 𝑏𝑏; 1,−1)) 𝜕𝜕𝑦𝑦² = 𝛽𝛽11 ≤ 0� , and according to the restrictions 
implied by the translation property, 
𝜕𝜕2(𝐶𝐶𝑜𝑜����⃗ (𝑥𝑥,𝑦𝑦, 𝑏𝑏; 1,−1)) 𝜕𝜕𝑏𝑏² = 𝜕𝜕2(𝐶𝐶𝑜𝑜����⃗ (𝑥𝑥,𝑦𝑦, 𝑏𝑏; 1,−1)) 𝜕𝜕𝑦𝑦𝜕𝜕𝑏𝑏 =� 𝛽𝛽11� , where 𝛽𝛽11 is estimated to be -0.050 
(p-val < 0.01). The first order coefficient of CDI two years lagged (𝑥𝑥6) is estimated to be -0.134 (p-val 
<0.1). The second order coefficient of CDIt-2 (𝑥𝑥6) is estimated to be 0.170 (p-val < 0.05). As the depend-
ent variable in the directional distance function is 𝐶𝐶𝑜𝑜����⃗ (𝑥𝑥,𝑦𝑦, 𝑏𝑏; 1,−1), this means that there is a reverse 
U shape relationship between the ECO-E and CDI two years ago (𝑥𝑥6). 

  

𝑔𝑔 = �−𝑔𝑔𝑏𝑏 ,𝑔𝑔𝑦𝑦� 

Products revenue, y 

 

 

O Herfindahl index, b 
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Table 2: Estimates of directional distance function 

Variables Symbol Coef. Std. Err. Variables  Coef Std. Err 
Dependent variable:  𝐶𝐶��⃗ (𝑥𝑥,𝑦𝑦, 𝑏𝑏;  1,−1)     
x1  -0.033* 0.020 x1· x2  -0.034*** 0.008 
x2  0.080* 0.046 x1· x3  0.064*** 0.007 
x3  -0.296*** 0.043 x1· x4  -0.076*** 0.009 
x4  1.001*** 0.047 x1· x5  -0.015*** 0.004 
x5  0.068*** 0.017 x1· x6  0.026 0.018 
x6  -0.134* 0.071 x2· x3  -0.014* 0.008 
y  -0.926*** 0.016 x2· x4  -0.011 0.011 
b  0.074  x2· x5  -0.005 0.004 
0.5· (x1)2  -0.003*** 0.001 x2· x6  0.001 0.039 
0.5· (x2)2  -0.003 0.014 x3· x4  -0.019** 0.009 
0.5· (x3)2  0.008 0.009 x3· x5  0.001 0.003 
0.5· (x4)2  -0.120*** 0.016 x3· x6  0.132*** 0.033 
0.5· (x5)2  -0.000 0.001 x4· x5  -0.004 0.004 
0.5· (x6)2  0.170** 0.077 x4· x6  -0.149*** 0.037 
0.5· (y)2,  
0.5· (b)2,  
y·b 

-0.050*** 0.004 x5· x6  -0.025* 0.014 

x1·y, x1·b  0.000*** 0.000 Dummy of crop 
rotation  -0.016*** 0.005 

x2·y, x2·b  0.000*** 0.000 Dummy of year 
2014  -0.011** 0.005 

x3·y, x3·b  0.000*** 0.000     
x4·y, x4·b  0.000*** 0.000     
x5·y, x5·b  0.000 0.000     
x6·y, x6·b  0.022* 0.012     
Statistics        
equation of σu     
Constant  -3.314*** 0.071     
Constant  -5.195*** 0.119     
σu  0.074 0.004     
λ  2.561 0.011     
Log likelihood=1738.882  LR test of sigma_u=0: chibar2(01) = 82.34               
*Significant at 10% level (P < 0.10), **Significant at 5% level (P < 0.05), ***Significant at 1% level (P < 0.01) 

Based on the estimates from the directional distance function, the elasticities of the eco-inefficiency 
with respect to (w.r.t.) inputs and outputs are calculated to get a more complete understanding of the 
production performance. The value of 𝐶𝐶𝑜𝑜����⃗ (𝑥𝑥,𝑦𝑦, 𝑏𝑏; 1,−1) indicates the level of eco-inefficiency; thus 
𝜕𝜕(𝐶𝐶𝑜𝑜����⃗ (𝑥𝑥,𝑦𝑦, 𝑏𝑏; 1,−1)) 𝜕𝜕𝑥𝑥⁄  measures the elasticity of eco-inefficiency w.r.t. inputs (Table 4). The elastic-
ity of eco-inefficiency w.r.t. land area size (𝑥𝑥1) and fixed cost (𝑥𝑥3) are found negative, as shown in Table 
4, which implies that there are positive relationships between ECO-E and these two inputs, suggesting 
that increasing the inputs farmland and fixed cost will increase potential higher ECO-E. Does this also 
mean the larger farms have higher ECO-E potential? The literature has pointed to arguments that small 
scale farms have higher ECO-E in agricultural production (Zhong et al. 2020; Stępień et al., 2021). There 
is also the argument that small and labour-intensive farms are associated with a higher degree of ECO-
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E compared to capital-intensive farms (Grzelak et al. 2019). In light of our finding of the relationship 
between farmland size and ECO-E, we suggest that the EU CAP should consider multiple factors related 
to ECO-E instead of applying one-size-fits-all policy. The elasticity of eco-inefficiency w.r.t. labour (𝑥𝑥2), 
intermediate cost without chemicals (𝑥𝑥4), cost of chemicals (𝑥𝑥5) and CDI two years lagged (𝑥𝑥6) are 
found to be positive, which means there are negative relationships between these inputs and ECO-E. 
The largest elasticity of the eco-inefficiency w.r.t. inputs is associated with the intermediate cost with-
out chemicals (𝑥𝑥4), estimated at 0.640 at the sample mean. This implies that greater intermediate cost 
excluding chemicals (𝑥𝑥4) would be correlated with higher eco-inefficiency. The elasticity of eco-ineffi-
ciency w.r.t.  𝐶𝐶𝐶𝐶𝐼𝐼𝑖𝑖−2 (𝑥𝑥6) is estimated at 0.063 at the sample mean, implying a 1% decrease of 𝐶𝐶𝐶𝐶𝐼𝐼𝑖𝑖−2  
would decrease the potential ECO-E by 6.3% on average. According to the finding of Di Falco and Cha-
vas (2008), crop diversity is positively related with production in lagged effects, which indicates that 
maintaining a diverse crop pattern would enhance agricultural productivity in the long run. However, 
our result is not consistent with the previous research, where the positive effect of crop diversity be-
comes stronger by time (Cardinale et al., 2004; Di Falco and Chavas, 2008).  

Table 3. Elasticity of eco-inefficiency w.r.t. inputs 

Variable Mean Std. Dev. Min Max 
ɛx1 -0.067 0.050 -0.779 0.094 
ɛx2 0.019 0.058 -0.624 0.078 
ɛx3 -0.125 0.081 -0.516 1.103 
ɛx4 0.640 0.220 -1.588 0.984 
ɛx5 0.022 0.020 -0.270 0.067 
ɛx6 0.063 0.079 -0.806 0.860 

 

The production function includes two additional dummy variables; one considering whether the main 
crop is changed during the observed period and one considering whether the year is later than 2013. 
The dummy variable of crop rotation was estimated to be -0.016 (p-val < 0.01), indicating that the crop 
rotation would significantly improve the ECO-E. Empirically, Crop rotations can substantially increase 
the soil organics, such as biomass C and N pools, and therefore benefit the production (McDaniel et al. 
2014). The dummy of year 2014 is also estimated to be significantly as -0.011 (p-val < 0.05), which 
means the farms are more eco-efficient after 2013. We interpret this as relating to the CAP reform in 
2013, and the mandatory greening component of the direct payments was introduced to promote 
sustainable land use. 

4.4.4.2 Analysis of ECO-E scores 

The average estimated ECO-E is 0.876 (Table 4), which indicates that on average, cropland farmers can 
improve ECO-E by 12.4% in terms of expanding agricultural products revenue and reducing HI given 
unchanged inputs. In Figure 2, we can see the histogram distribution of ECO-E, where there is an overall 
histogram distribution in the up-left position, the histogram distribution by Southern Sweden and 
Northern Sweden seem also satisfactory. The average ECO-E in Southern Sweden is 0.875, while the 
average ECO-E in Northern Sweden is 0.879. Although there is no significant regional difference be-
tween the average ECO-E in Southern and Northern Sweden, the minimum ECO-E in Southern Sweden 
(0.273) is much lower than the minimum ECO-E in Northern Sweden (0.609). This is expected because 
farming in Southern Sweden is comparatively more intensive, more fertiliser and pesticide are used in 
agricultural production, which therefore leads to less environmentally friendly production and a lower 
ECO-E in Southern Sweden. Summaries of ECO-E by farming type are also interesting. The ECO-E for 
conventional farming, organic certificated farming, and mixed or transitional organic farming are 
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0.876, 0.886, and 0.845 respectively. Although there is no significant difference between the average 
ECO-E for conventional farming, organic certificated farming, and mixed or transitional organic farm-
ing, the minimum ECO-E for certificated organic farming is highest among the three types of farming 
that is 0.684. 

Table 4: Summary of eco-efficiency (ECO-E) 

ECO-E Obs Mean Std. Dev. Min. Max. 
Overall ECO-E 937 0.876 0.082 0.273 0.990 
 
Summary by regional location 
ECO-E in southern Sweden 871 0.875 0.083 0.273 0.990 
ECO-E in northern Sweden 66 0.879 0.061 0.609 0.975 
 
Summary by farming type 
ECO-E for conventional farming 861 0.876 0.082 0.273 0.990 
ECO-E for certificated organic farming 56 0.886 0.058 0.684 0.973 
ECO-E for mixed or transitional organic farm-
ing 20 0.845 0.130 0.455 0.962 

 

4.4.5 Conclusion  

Sustainable agriculture seeks to increase the production of high-quality food and fibres to meet current 
social and economic requirements while simultaneously maintaining healthy ecosystems to support 
the productive and economic needs of future societies. Transforming agriculture to be more in line 
with sustainability requires us to take economic, environmental, and societal performance into ac-
count. Analysis of ECO-E of farms improves our understanding about possible synergies or trade-offs 
between economic performance and ecological performance as agriculture become more in line with 
sustainability. Loss of biodiversity is one of the most significant sustainability problems in Swedish ag-
riculture (Morberg et al., 2020). Crop diversity improves the cultivated biodiversity with impacts both 
below and above ground. The novelty of this paper is that it measures ECO-E in cropland farms by 
incorporating the dynamic effects of crop diversity into the production function when assessing ECO-
E. The innovation of the approach lies in that the dynamic effect of crop diversity is addressed in ECO-
E measurement, by treating the lagged crop diversity as one input, and the crop diversity loss in current 
year as an undesirable output. In the empirical modelling, the output of crop diversity loss is repre-
sented by the “reverse output” in the directional distance function. Aside of the ecological input and 
output, we account for land, labour, fixed cost and variable cost as inputs and revenue for agricultural 
product as normal good output for the production in cropland in Sweden.  

The average ECO-E is estimated to be 0.873, although the average ECO-E in Northern Sweden is slightly 
higher than that in the Southern Sweden, the minimum ECO-E in Northern Sweden is much higher than 
the minimum ECO-E in Southern Sweden. CDIt-2 is estimated to positively contribute to ECO-E of crop 
production significantly.  

Our results show that the crop diversification is a burden on the farm economy, and is related to the 
regional economic and environmental characteristics. The new CAP 2021-2027 is aiming at better tar-
geting for securing stable economic incomes and intensifying the environmental and climate actions, 
with increased focus on biodiversity (European Commission, 2021). Given our results, to achieve the 
goals, policy compensation schemes should take into consideration the income forgone, given the re-
gional potential, both in terms of agricultural production and environmental endowments. 
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While this paper introduces a novel approach to considering crop diversity in the ECO-E measurement 
of cropland farms, several interesting avenues for future research in this area remains. First, the un-
balanced panel data used will hide interesting information between panels, for example, the group 
effects of crop species in terms of ECO-E, and future research will have an important role to effects of 
crop species between panels. Second, by gathering information about the positioning of specific crop 
plots the measurement of crop rotation and crop diversity can be improved. This would enable assess-
ment of even more precise ecological effects of production and to further refine the analysis of syner-
gies and tradeoffs between ecological and economic effects. Third, crop diversity is only one compo-
nent part of the total biodiversity of an ecosystem. Future research could use the approach we devel-
oped here to expand the biodiversity consideration in the ECO-E measurement by also considering wild 
species, for instance by considering use of seminatural pasture areas, wild flower strips between fields 
etc. In this respect, the approach introduced here is promising to even better understand the tradeoffs 
and synergies between farms contribution to biodiversity and economic values. 
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4.5 Estimating eco-efficiency of the olive farms in Crete, Greece (DEMETER) 
Alexandra Sintori, Penelope Gouta , Vasilia Konstantidelli 1 and Irene Tzouramani 

 
1 Agricultural Economics Research Institute – DEMETER 

 

4.5.1 Introduction and description of case study region 

Eco-efficiency is defined as the “efficiency with which ecological resources are used to meet human 
needs” (OECD, 1998) and it expresses the ability of a production unit to achieve economic results with 
the minimum possible use of resources and environmental impact (see also Ehrenfeld, 2005). There-
fore, eco-efficiency is often used to measure the economic and environmental performance of a pro-
duction unit. 

Agriculture is an economic activity that depends highly on the use of natural resources and interacts 
closely with the surrounding ecosystem. Some of the main environmental impacts associated with ag-
riculture are soil degradation, biodiversity loss, natural resources overuse, water and soil pollution 
from the use of agricultural inputs and emission of greenhouse gases (Gołaś at al., 2020; Gołębiewska 
and Pajewski, 2018). The concept of eco-efficiency is particularly relevant when it comes to evaluating 
the performance of farming activities and has gained attention as a way to achieve sustainability of 
the food supply chain (Gołaś et al., 2020).   

Indeed, the pursuit of sustainable food production systems and dietary patterns is promoted world-
wide and is targeted by agricultural policies. According to W.H.O. (2019), a sustainable diet promotes 
all dimensions of individuals’ health and wellbeing, has low environmental pressure and impact, is ac-
cessible, affordable, safe and equitable, and is culturally acceptable. The Farm to Fork Strategy23 en-
courages consumers to switch to more sustainable diets and producers to adopt environmentally 
friendly farming practices. Within this context, the Mediterranean diet, the cultural and health value 
of which has already been acknowledged (UNESCO, 2013) is viewed as an alternative sustainable diet, 
provoking the research interest in its environmental aspects. Olive consumption is a fundamental ele-
ment of the Mediterranean diet, and its benefits on health are numerous and well documented (Covas 
et al., 2006; Uylaşer and Yildiz, 2014; Gorzynik-Debicka et al., 2018). On the production side, olive cul-
tivation is an important agricultural activity for the Mediterranean basin and offers income to many 
families in the area, as it is commonly included in the portfolio of Mediterranean farms.  

On the other hand, as any other agricultural activity, olive oil production is associated with environ-
mental concerns like soil degradation and water and input (fuel, pesticides and fertilisers) overuse 
(Banias et al., 2017). Since olive oil is promoted as part of a sustainable diet, light needs to be shed on 
the production practices that minimize any adverse effects on the environment and the pathways to 
agroecological transition of olive cultivation.  

This study aims to address the issue of eco-efficiency of olive farms in Crete, Greece, considering their 
main cultivation practices, across agroecological farm types. In Greece, a total of 792,642.5 ha of olive 
groves are kept, with the Prefectures of Peloponnese and Crete accounting for 27% and 23% of the 
total cultivated area, respectively (HAS24, 2017). The total number of trees cultivated in Greece in 2017 

                                                           
23 Available at: https://ec.europa.eu/food/sites/food/files/safety/docs/f2f_action-plan_2020_strategy-info_en.pdf 
24 Hellenic Statistical Authority 
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was 148,053,557 which corresponds to an average density of 187 trees per hectare. The total olive 
production of the country reached 311,727 tons in 2017. 

This analysis focuses on the Prefectures of Heraklion and Lasithi, located in the eastern part of the 
island, where 89,644.6 and 27,086.4 ha of olive groves are kept, respectively (HAS, 2017). This area 
corresponds to 15% of the total olive trees of the country and 17% of the total olive production.  The 
number of olive farms located in the area under investigation was 52,707 in 2016, which accounts for 
12% of the total Greek olive farms (HAS, 2016). Olive production is a well-established activity in Crete 
due to the existing climatic conditions and the ability of the olive trees to adopt to drought and salinity 
(see for example Vasilaki et al., 2008). 

It is also important to emphasize that organic olive cultivation refers to 3% of the total olive cultivation 
in the study area, which corresponds to 3,721 ha and 1,016 farms (Tzouramani et al., 2019). AGRO 2, 
which is a quality certification for the Integrated Management System, is also common in the area 
under investigation (Duvaleix et al., 2020). The number of AGRO 2 certified farms was 2,508 in Hera-
klion and 2,658 in Lasithi, which corresponds to 6,623 ha and 5,422 ha, respectively (Duvaleix et al., 
2020).  

One of the main challenges regarding eco-efficiency and in general environmental performance is its 
estimation with a single aggregate indicator, as will be further discussed in our analysis (Russo et al., 
2016; Gołaś et al., 2020). In this study we employ the Data Envelopment Analysis (DEA) for this pur-
pose. DEA has been widely used in agricultural economics as a method to estimate the traditional 
technical efficiency of farms (Lansink and Reinhard, 2004; Theodoridis et al., 2006; Zhu and Demeter, 
2012; Latruffe et al., 2017; Madau et al., 2017). Many studies in Greece and abroad also use the anal-
ysis to estimate the technical and economic efficiency of olive farms (Lachaal et al., 2005; Lambarraa 
et al., 2007; Kashiwagi at al., 2012; Beltrán-Esteve, 2013; Bernal-Jurado et al., 2017; Niavis et al., 2018; 
Stilitano et al., 2019; Raimondo et al., 2021). The DEA methodology has also been used as a method to 
estimate eco-efficiency of agricultural activities, since it holds many advantages (see for example 
Picazo-Tadeo et al., 2011; Ullah et al. 2016; Coluccia et al., 2020; Eder et al., 2021). 

In our case study we follow the work of Gómez-Limón et al. (2012), who estimate eco-efficiency of 
olive farms in Andalucía, by implementing the methodology described by Kuosmanen and Kortelainen 
(2005) and using various indicators to estimate environmental burdens. Farm and farmer characteris-
tics that determine eco-efficiency are also investigated by implementing regression analysis (see for 
example: Urdiales et al., 2016). Eco-efficiency of the olive farms is examined across different agroeco-
logical farm types, identified within the LIFT project. 

4.5.2 Data 

The data used for the estimation of eco-efficiency of the Cretan farms is part of the LIFT large-scale 
farmer survey dataset. The data gathered in Greece refers to both olive and vineyard farms, but for 
the purpose of this case study, specialist olive farms were selected. We consider a farm as specialist 
olive when two thirds of the farm output (revenues) come from olives (mainly oil production)25. Fol-
lowing this rule 73 out of the 108 farms of the Greek sample are characterised as specialist olives. This 
group of farms was then checked for outliers, since the DEA methodology that was performed is sen-

                                                           
25 This rule is in line with the typology of farms in FADN according with their Standard Gross Margin (SGM) (https://eur-
lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31985D0377&from=EN. In our analysis we use the value of output in-
stead of the SGM since the specific costs considered in the latter cannot be broken down to the activities of the farm.  Thus, 
we assume that these costs would be proportional to the revenues of each activity.   
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sitive to outliers. Eight farms were excluded from the final sample as important information like reve-
nues was missing (incomplete interviews). The remaining 65 farms that were considered in the analysis 
have an average size of 4.9 hectares which yield on average 13,340€ of output (excluding subsidies) 
and correspond to 2,175 hours of labour (1.24 FTE26).   

The specialist olive farms were almost equally distributed between the two case study areas, since 32 
are located in Heraklion and 33 in Lasithi. Their land is located in low altitudes, less than 600m, while 
30 of the farms report their farmland to be located in an altitude less than 300m. The majority of land 
is also irrigated (57 farms).  

Regarding their agroecological profile, 27 are organic, 44 fall into the conservation farms category, 5 
are considered low input, 5 are integrated and 5 are characterised as medium input, according to the 
LIFT survey based protocol for farm typology, developed within the LIFT project (Rega et al., 2021). The 
farm owners are in their majority male (52) and their average age is 53 years. They are considered 
experienced farmers since their average years of experience in agriculture are 31. Twenty-seven of 
them have higher education and 33 have finished either middle school or high school. It should also 
be mentioned that 14 of them have agricultural education provided either at high school or at the 
university level. The labour inputs mainly derive from the farm household, since 75% of the total labour 
comes from the family members. On average 1.1 members of the family offer their employment in the 
olive farms. The farms also occupy on average 2.89 hired workers, mainly seasonal, who perform tasks 
like harvesting of olives or pruning of the olive trees. 

Regarding the managerial profile of the olive farms, it should be emphasised that even though they 
specialize in olive production, pluriactivity is common since on average, only one third of the household 
income comes from agriculture. Furthermore, it is important to mention that the farmers of our sam-
ple seem to place more emphasis on health and environmental objectives. Specifically, when asked to 
evaluate a set of objectives, during the LIFT large scale farmer survey, “Being fit and healthy”, “Pro-
tecting the environment for future generations” “farming in a way that enhances the environment”, 
“Producing high quality products” and “improving the condition of land” received the highest scores 
on a 5-point Likert scale (4.41, 4.40, 4.35, 4,32 and 4.27, mean value respectively). On the other hand, 
economic objectives like “Expanding the business”, “Maximising profit”, “Maximising production”, and 
“Minimising risk” received lower scores (3.49, 3.96, 4.04 and 4.07, mean value respectively).  

Finally, for the olive farms of the sample, the main distribution channel is the producers’ organisations, 
followed by merchants and wholesalers and processors, while a very small part of the production is 
directly sold to consumers at an average selling price of 3.18€/kilo.  

4.5.3 Methods 

To estimate eco-efficiency in this study we implement the methodology proposed by Kuosmanen and 
Kortelainen (2005) and followed in a number of studies on agricultural activities (Picazo-Tadeo et al, 
2011; Ullah et al., 2016; Urdiales et al., 2016; Godoy-Durán et al., 2017; Soliman and Djanibekov, 2020). 
Kuosmanen and Kortelainen (2005) employ DEA as a method to aggregate environmental pressures to 
construct a single eco-efficiency index. DEA is a non-parametric method to estimate efficiency, origi-
nally developed by Charnes et al (1978). The methodology is based on the construction of a production 
frontier where all the decision making units (DMU), or in our case farms, that use minimum level of 
inputs to produce a certain output lie (benchmark units). This production frontier is deterministic and 
every deviation from the frontier is considered as inefficiency.  

                                                           
26 One Full Time Equivalent (FTE) is equal to 1,750 hours of labour.  
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Let N a sample of DMUs, Vn the economic value added and Zn the environmental pressures of unit n 
(n=1,2,…,N).  Eco-efficiency can be defined as: 

𝐸𝐸𝐸𝐸𝑛𝑛 =
𝐼𝐼𝑛𝑛

𝐶𝐶(𝑍𝑍𝑛𝑛)
 (1) 

Where D is the damage function that aggregates the M environmental pressures into a single environ-
mental damage score (Kuosmanen and Kortelainen, 2005). A linear approximation of D would be a 
weighted sum of all environmental pressures: 

𝐶𝐶(𝑧𝑧) = 𝑤𝑤1𝑧𝑧1 + 𝑤𝑤2𝑧𝑧2  + ⋯+ 𝑤𝑤𝑀𝑀𝑧𝑧𝑀𝑀 (2) 

where wm (m=1,…,M) represents the weight of environmental pressure m. DEA can be implemented 
to estimate the weights that maximize the efficiency score of each production unit n as follows: 

max𝐸𝐸𝐸𝐸𝑛𝑛 =  
𝐼𝐼𝑛𝑛

𝑤𝑤1𝑍𝑍𝑛𝑛1 + 𝑤𝑤2𝑍𝑍𝑛𝑛2 + ⋯+ 𝑤𝑤𝑀𝑀𝑍𝑍𝑛𝑛𝑀𝑀
 

Subject to: 

𝐼𝐼1
𝑤𝑤1𝑍𝑍11 + 𝑤𝑤2𝑍𝑍12 + ⋯+𝑤𝑤𝑀𝑀𝑍𝑍1𝑁𝑁

≤ 1 

𝐼𝐼2
𝑤𝑤1𝑍𝑍21 + 𝑤𝑤2𝑍𝑍22 + ⋯+𝑤𝑤𝑀𝑀𝑍𝑍2𝑁𝑁

≤ 1 

. 

. 

. 

𝐼𝐼𝑁𝑁
𝑤𝑤𝑁𝑁𝑍𝑍𝑁𝑁1 + 𝑤𝑤2𝑍𝑍𝑁𝑁2 +⋯+ 𝑤𝑤𝑀𝑀𝑍𝑍𝑁𝑁𝑁𝑁

≤ 1 

𝑤𝑤1,𝑤𝑤2, … . ,𝑤𝑤𝑀𝑀 ≥ 0 

(3) 

As in the case of technical efficiency, the above constraints impose that the maximum value of eco-
efficiency is one (100%) and always positive or zero (since the weights are always positive or zero). 
Higher values indicate good-environmental performance, whereas values closer to zero indicate higher 
eco-inefficiency. The above problem is not linear and requires a lot of computational effort to solve. 
But we can overcome this issue if the inverse of the eco-efficiency ratio is minimised as follows: 

min𝐸𝐸𝐸𝐸𝑛𝑛−1 = 𝑤𝑤1
𝑍𝑍𝑛𝑛1
𝐼𝐼𝑛𝑛

+ 𝑤𝑤2
𝑍𝑍𝑛𝑛2
𝐼𝐼𝑛𝑛

+ ⋯+ 𝑤𝑤𝑀𝑀
𝑍𝑍𝑛𝑛𝑀𝑀
𝐼𝐼𝑛𝑛

 

Subject to: 

𝑤𝑤1
𝑍𝑍11
𝐼𝐼1

+ 𝑤𝑤2 
𝑍𝑍12
𝐼𝐼1

+ … . +𝑤𝑤𝑀𝑀
𝑍𝑍1𝑀𝑀
𝐼𝐼1

≥ 1 

𝑤𝑤1
𝑍𝑍21
𝐼𝐼2

+ 𝑤𝑤2 
𝑍𝑍22
𝐼𝐼2

+ … . +𝑤𝑤𝑀𝑀
𝑍𝑍2𝑀𝑀
𝐼𝐼2

≥ 1 

. 

. 

. 

𝑤𝑤1
𝑍𝑍𝑁𝑁1
𝐼𝐼𝑁𝑁

+ 𝑤𝑤2 
𝑍𝑍𝑁𝑁2
𝐼𝐼𝑁𝑁

+ … . +𝑤𝑤𝑀𝑀
𝑍𝑍𝑁𝑁𝑀𝑀
𝐼𝐼𝑁𝑁

≥ 1 

(4) 
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𝑤𝑤1,𝑤𝑤2, … . ,𝑤𝑤𝑀𝑀 ≥ 0 

It should be emphasised that the DEA eco-efficiency score indicates the maximum equiproportionate 
reduction in all environmental pressures that is technically possible given the level of economic activity 
V.  

In our analysis we use four indicators that correspond to the main environmental burdens associated 
with olive cultivation (see also Table 1): 

1. Water consumption. Irrigation water use is one of the main environmental concerns associated 
with agricultural activities. Particularly in the region of Crete, many areas of the island already 
face water scarcity, while drought and extreme precipitation events are expected to increase 
as the result of climate change (Tapoglou et al., 2019). Even though olive cultivation is not 
considered water demanding and is traditionally rainfed, climate change and the intensifica-
tion of the activity place extra attention to water management as a way to safeguard this val-
uable natural resource and maintain the activity. Gómez-Limón et al (2012) also use water 
consumption as a variable in their eco-efficiency analysis.  

2. Fuel consumption. Fuel consumption is considered in this analysis as an approximation of 
greenhouse gas emissions (GHGs) from practices carried out within the farm27. It should be 
noted that fuel is the main energy source used in the olive farms and its consumption is often 
very high because of the structure (multiple land plots) of Greek farms.   

3. Soil management. This indicator was adopted from the LIFT survey-based protocol for farm 
typology (Deliverable 1.4, Rega et al., 2021)28. Specifically, the analysis uses the normalised 
score estimated for the characterisation of conservation farms, which in fact aggregates all the 
soil management practices performed in olive farms. These practices include soil tillage inten-
sity (no tillage, conservation tillage and conventional tillage) and soil cover and fertilisation 
(planting of cover crops, leaving crop residues on soil, planting of catch crops, crop rotation 
and mixed cropping). Each of these practices, is included in the calculation of the soil manage-
ment index as a binary variable that takes the value of 1 if the practice is implemented in the 
farm and zero otherwise.   Next, the score of each variable was appointed weights that derived 
by taking into account expert opinions and the percentage of the farm land that the practice 
was implemented. For the former, experts were asked to score the practices (from 0 to 10) 
according to their significance. The final scores for each farming practice were thus calculated 
as the averages of the scores given in the four responses. For example, the scores appointed 
to conventional tillage, conservation tillage and no tillage were 0, 8.5 and 10 respectively. This 
score was then multiplied by an area weight, according to the area that the practice was im-
plemented29. Lastly, the final score was calculated as a weighted sum of each criterion (e.g. 
tillage and soil cover) and was in turn normalised in a scale of 0 to 10, to build the soil man-

                                                           
27 The available data on inputs used in the farm-mainly fertilisers, composts, soil improvements, pesticides etc- does not allow 
estimations of the pre-chain GHGs that are associated with the manufacture and transportation of these inputs. Therefore, 
only the fuel consumed for everyday tasks performed within the farm, like cultivation, fertilisation, pruning, olive collection 
and pest control (see also Feliciano et al, 2014) are used as an estimation of GHGs. However, it should be emphasised that as 
indicated by the relevant literature fuel consumption within the farm (i.e. for the cultivation of olive trees) is far more signif-
icant than any pre-chain fuel consumption (i.e. for the production and transportation of inputs) (Tsarouchas et al., 2015). 
Specifically, Tsarouchas et al. (2015) estimate that the cultivation of olives is the greatest contributor to global warming in 
the olive oil production chain (40.37%). 
28 Rigby et al. (2001) discuss the issue of constructing farm level indicator of sustainability in more detail. 
29 These weights are 0.025 when the percent of the farm area is less than 5%, 0.15 when the area is between 5 and 25%, 
0.375 when the area is between 25 and 50%, 0.625 when the area is between 50 and 75% and 0.875 when the area is between 
75 and 100%. 
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agement composite indicator. It should be emphasised that the inverse of the soil manage-
ment indicator was incorporated in the model as an environmental burden, since the score is 
higher when practices that enhance soil quality are implemented. Gómez-Limón et al. (2012) 
also incorporate relevant practices in their analysis using alternative indicators (a soil erosion 
indicator and a biodiversity indicator).  

4. Fertilisation and pest management. This indicator was also built based on the LIFT survey-
based protocol for farm typology (Rega et al., 2021) and was adopted from the low input farm 
type. Specifically, the practices that were considered to build this indicator refer to fertiliser 
use (inorganic fertiliser, animal manure, sewage sludge, compost and soil amendments) and 
pest control (use of chemical pesticide and products allowed in organic farming). As in the case 
of the previous indicator, expert opinion weights and area weights were used for the final es-
timation of the aggregate indicator (See Deliverable 1.4 for a more detailed description of the 
methodology used to weight the aforementioned practices). For our analysis, the two main 
criteria (fertilisation and pest control) receive equal weights. Again, the inverse of the esti-
mated fertilisation and pest management indicator was incorporated in the model to denote 
environmental burden. In the study of Gómez-Limón et al. (2012), the variables pesticide risk 
and nitrogen ratio, used in their DEA model can be considered as the corresponding variables 
to our Fertilisation and pest management indicator. 

Table 1: Definitions of the variables used in the DEA analysis. 

 Definition 
 Environmental pressures 

Water consumption Total amount of irrigation water used per hectare 
Fuel consumption Total amount of fuel consumed to perform everyday tasks per hec-

tare  
Soil management Composite indicator of soil management that includes tillage prac-

tices and soil cover practices 
Fertilisation and pest man-

agement 
Composite indicator that includes fertilisation practices and pest 
management practices 

 Output 
Revenue Total value of farm output (excluding subsidies) per hectare 

 

The economic results are measured in our analysis using the value of output/revenue and not an al-
ternative economic performance indicator like value added and net profit as suggested in previous 
studies (Kuosmanen and Kortelainen, 2005; Gómez-Limón et al., 2012). This indicator was adopted, 
since the economic results of olive farms during the period 2016-2018 were poor due to unfavourable 
weather conditions and olive fly problems. Many of the sample farms had negative net profit and some 
even gross margin, which poses a problem for the implementation of the DEA methodology. Therefore, 
for computational reasons the output value was used to estimate the level of economic activity. How-
ever, even if costs are not included in the analysis, practices regarding the main cost elements are used 
as environmental burdens, or in the words of the traditional DEA, as inputs. Water and fuel consump-
tion are included in the model as well as practices that approximate the level of fertiliser and pesticide 
use, which constitute the main costs of olive farms (see also De Gennaro et al., 2012). The two produc-
tion elements that are not included in the model are labour and capital but as argued by (Kuosmanen 
and Kortelainen, 2005) these inputs are not included in eco-efficiency measurements as they represent 
income for society (wages and rents). Therefore, though the use of output value is not the ideal indi-
cator for economic results, the fact that all main inputs of the production process are considered as 
environmental burdens minimizes the shortcoming.  



  

LIFT – Deliverable D3.1  
 

200 
 

Table 2: Descriptive statistics of the variables used in the DEA analysis for the total farms and per agroe-
cological type. 

 Total 
farms 

Medium 
input 

Conserva-
tion 

 
Organic 

Low in-
put/ Inte-

grated 
 

Agroecologi-
cal 

Variable Mean (Standard deviation) 
Water consumption 

(lt/ha) 
1119 

(2958) 
2003 

(4381) 
967 

(1710) 
1321 

(2106) 
1581 

(1568) 
1828 

(1693) 
Fuel consumption 

(lt/ha) 
56 

(115) 
203 

(281) 
35 

(91) 
42 

(91) 
24 

(43) 
25 

(50) 
Soil management-in-
verse (dimensionless) 

0.19 
(0.21) 

0.31 
(0.38) 

0.13 
(0.01) 

0.17 
(0.17) 

0.14 
(0.10) 

0.13 
(0.05) 

Fertilisation and pest 
management-inverse 

(dimensionless) 

0.71 
(1.05) 

0.16 
(0.12) 

0.76 
(1.24) 

0.88 
(1.31) 

0.11 
(0.02) 

0.11 
(0.02) 

Revenues (€/ha) 2389 
(1853) 

2065 
(2165) 

2197 
(1902) 

2977 
(2270) 

3678 
(1638) 

3724 
(1877) 

 

Table 1 contains a short description of the definitions of the variables used in the DEA analysis and 
Table 2 summarizes the statistics for all farms but also per agroecological fam type, as discussed in the 
Results section. 

The next step of our analysis involves the second-stage regression analysis that is performed to inves-
tigate the association of the eco-efficiency scores that the DEA model provides with certain character-
istics of the farm and farmer. The truncated regression analysis was performed (see for example Soli-
man and Djanibekov 2020) using the set of explanatory variables presented in Table 3. The variables 
that were used in the truncated regression analysis involve demographic characteristics of the farmer 
(education, sex, age, experience), characteristics of his economic activity (market orientation, income 
from olives and income from farming) as well as objectives of the farmer (producing high quality prod-
ucts and protecting the environment for future generations).   

The truncated regression analysis was chosen over the Ordinary Least Squares (OLS) regression, since 
the estimations performed by the OLS regression analysis are considered biased and inconsistent, due 
to the fact that the dependent variable consisting of the efficiency scores is censored (Samut et al., 
2016). Therefore, it is better to have the estimations done by Tobit or truncated regression, however 
the use of truncated regression models in generally preferred and considered more appropriate (Simar 
and Wilson, 2007; Dai et al., 2016; Li et al., 2017).  

The statistical analysis as well as the DEA analysis were performed in STATA/SE 13.0. 
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Table 3: Definition of variables used in the second-stage regression analysis. 

Variable Definition 
Market orientation  Revenue (excluding subsidies) to Revenue plus 

subsidies ratio 
Education of owner Ordinal variable that takes the value 1 for primary 

education, 2 for middle school and high school and 
3 for higher education 

Sex of owner Binary variable that takes the value 1 for male and 
0 otherwise 

Age of owner  Number of years 
Experience of owner  Number of years of experience in farming 
Income from olives Percent of farm income that comes from olive cul-

tivation 
Income from farming Percent of family income that comes from farming 
Producing high quality products Variable measured in Likert scale indicating 

farmer’s objective (1=not at all important, 2=Unim-
portant, 3=Neither important nor unimportant, 
4=Important, 5=Very important) 

Protecting the environment for future gener-
ations 

Variable measured in Likert scale indicating 
farmer’s objective (1=not at all important, 2=Unim-
portant, 3=Neither important nor unimportant, 
4=Important, 5=Very important) 

 

4.5.4 Results 

The summary statistics presented in Table 2, indicate the necessity of the use of an aggregate indicator 
to estimate eco-efficiency of the sample farms, as already discussed in the Introduction section. As we 
can observe from the average value and the standard deviation of the variables included in the DEA 
model, the selected indicators of environmental burden vary significantly across agroecological farm 
types30. Some farm types perform better when a specific environmental impact (or performance) in-
dicator is examined but poorly when it comes to another. This, as already mentioned, is due to the fact 
that the use of multiple simple indicators does not take into account substitution possibilities between 
environmental burdens which can be confusing for policy makers to translate (Kuosmanen and Korte-
lainen, 2005).  

Let us, for example, examine the performance of conservation farms. These farms -by definition-per-
form well when it comes to the Soil management indicator (the inverse of the indicator is included in 
the table, which means that low values indicate better environmental performance). This farm type 
also performs well when it comes to water and fuel consumption but quite poorly when it comes to 
the indicator of the Fertilisation and pest management (again the inverse of the indicator is used, 
meaning that lower values correspond to better environmental performance). The overall environ-
mental performance of the farms included in this farm type cannot be estimated unless a single indi-
cator is used, which in our study is the DEA score. 

Another interesting observation of the summary statistics of Table 2, regards the performance of or-
ganic farms. As can be seen when the simple indicators are examined, this agroecological farm type 
performs quite well in most of them, with the exception of the Fertilisation and pest management 

                                                           
30 The environmental indicators were also examined relative to the revenues produced. 
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indicator, which seems as a paradox, given the fact that organic farms use less inorganic fertilisers and 
pesticides. But this may well be the outcome of overuse of other practices and inputs allowed in or-
ganic production, like animal manure. Indeed, when the costs of animal manure are compared be-
tween organic and non-organic farms in the sample, it can be observed that they are almost double in 
organic production. Since the price of animal manure does not differ significantly between organic and 
conventional farms, this difference is mainly attributed to the amount of manure used in organic agri-
culture. Accordingly, low input/integrated and agroecological farms seem to perform well in all indica-
tors, while medium input farms perform poorly when it comes to fuel and water consumption but 
better when it comes to Soil management and Fertilisation and pest management.  

Let us now examine the overall environmental performance of the sample farms by performing the 
DEA analysis. The main findings of the eco-efficiency analysis are presented in Table 4. The average 
eco-efficiency is quite low, estimated at 0.39. This result indicates that there is a lot of room for im-
provement of the overall environmental performance of the sample olive farms. Furthermore, as indi-
cated by the results of Table 4, low-input/Integrated farms are indeed very eco-efficient compared to 
the rest of the farms, characterised also by low variation of the efficiency scores. Similar results are 
found for agroecological farms. Medium input farms are also very eco-efficient, due to the fact that 
they receive a very good score in the Fertilisation and pest management indicator. Organic and con-
servation farms have a lot of room for improvement since they are characterised by smaller eco-effi-
ciency scores with high variation. 

The traditional efficiency concept, suggests that the efficiency score indicates the maximum feasible 
equiproportionate reduction of environmental burdens that can be achieved, given the level of output, 
which is in our case 61%. In the eco-efficiency analysis and given the environmental indicators used in 
the model, a somewhat different interpretation is more appropriate. As Kuosmanen and Kortelainen 
(2005) suggest, the DEA scores assigned to each eco-inefficient farm can provide guidance on efficiency 
improvements. Such improvements may refer to the practices that this farm should implement or on 
adjustments it needs to make to approximate more the efficient farms.  For example, by combining 
the data from Tables 2 and 4, it can be deducted that if the relatively eco-efficient low-input and agroe-
cological farms wish to improve their performance they should perhaps try to improve their water use, 
by adopting more efficient water management practices, while organic farms should also try to im-
prove their Fertilisation and pest management practices.  

Significant room for eco-efficiency improvement of olive groves is also identified in the study of 
Gómez-Limón et al. (2012) as well as in the study of Beltrán-Esteve (2013). The former study estimates 
that olive groves produce on average 262% more environmental pressures compared to a virtual effi-
cient farm that maintains the same output, while the later study estimates that the environmental 
burdens can be reduced by 45-49% on average (depending on the farm type) while keeping the output 
constant. These eco-efficiency scores are lower than technical efficiency scores estimated in the ma-
jority of studies that focus on olive groves in the Mediterranean basin (Lachaal et al., 2005; Lambarraa 
et al., 2007; Kashiwagi at al., 2012; Jurado et al., 2017; Niavis et al, 2018; Stilitano et al., 2019; Rai-
mondo et al., 2021). On the other hand relatively low technical efficiency scores (0.54 on average) are 
estimated by Tzouvelekas et al. (2001) for Greek conventional olive groves indicating that there is a lot 
of room for improvement regarding the utilisation of inputs. It should also be noted that the technical 
efficiency scores that were estimated for the olive farms of our sample are also higher compared to 
the eco-efficiency scores estimated in this study (see also LIFT Deliverable 3.1).  
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Table 4: Descriptive statistics of Environmental Efficiency (EE) for the sample farms and per agroeco-
logical type. 

Agroecological type Mean 
Standard Devi-
ation 

CV Min Max 

Total farms 0.39 0.30 77% 0.02 1 

Organic 0.42 0.34 81% 0.04 1 

Conservation 0.36 0.30 83% 0.02 1 

Low input/Inte-
grated 0.66 0.24 

36% 
0.35 1 

Medium input 0.68 0.38 56% 0.04 0.98 

Agroecological  0.65 0.27 42% 0.35 1 

 

Eco-efficiency scores were further examined using truncated regression analysis, as mentioned in the 
sections Data and Methods. The results are presented in Table 5. One important finding of the regres-
sion analysis is that market orientation has a positive and statistically significant effect on the EE score 
(based on the coefficient and the p-value of this variable). This finding indicates that subsidies have a 
negative effect on the eco-efficiency of farms and is in accordance with the findings of technical effi-
ciency analysis performed for Deliverable 3.1. Other studies that investigate the role of subsidies on 
farm environmental performance have come to the same conclusion (Van Passel et al., 2007), as well 
as studies that focus on the technical efficiency of olive farms in Greece and the Mediterranean region 
(Zhu et al., 2011; Lambarraa and Kallas, 2010). 

The education of the farmer also seems to positively affect eco-efficiency of the farm, as opposed to 
his experience. The positive effect of education is a common finding of many studies that focus on the 
explanation of eco-efficiency (see for example Van Passel et al., 2009; Picazo-Tadeo, et al., 2011; Go-
doy-Durán et al., 2017). However, the exact opposite results were found in the estimation of technical 
efficiency of the farms, that seems to be explained by experience rather than education.  

What is also important to emphasize is that the higher the percent of income that comes from farming 
the higher the eco-efficiency. In other words, farmers that are more involved in the activity tend to 
receive higher eco-efficiency scores. Similar findings have been observed by Gómez-Limón and 
Sanchez-Fernandez (2010) regarding agricultural sustainability, which increases when the income from 
farming increases. On the other hand, the percent of farm income that comes from olive cultivation 
has a negative effect on eco-efficiency, though not statistically significant. This means that the pres-
ence of other cultivations may enhance eco-efficiency as opposed to olive monoculture.  

Finally, it seems that farmers that place more value on producing high quality products appear to have 
higher eco-efficiency scores, as opposed to those that state they place more emphasis on protecting 
the environment for future generations. These last findings may suggest that the actual reason for im-
plementing environmentally friendly farming practices may be farmers’ focus on quality products and 
not on environmental concerns per se.  This may not be such an unexpected finding, if we keep in mind 
the increasing demand for high quality products and consumer awareness on health and environmen-
tal issues. Furthermore, as Keating et al (2010) emphasize, as far as agriculture is concerned, the con-
cept of eco-efficiency maybe interpreted as the production of more high-quality products while simul-
taneously reducing the use of inputs soil, water, energy, work and capital.  
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Table 5: Results of the Truncated Regression analysis. 

Variables Coefficient Std. Err. z P>z [95% Conf. Interval] 

Market orientation 1.858538 0.9736596 1.91 0.056 -0.0497992 3.766876 

Education of owner 0.4388131 0.2416445 1.82 0.069 -0.0348014 0.9124276 

Sex of owner 0.2603761 0.2499269 1.04 0.298 -0.2294717 0.7502239 

Age of owner (in years) -0.008905 0.0106067 -0.84 0.401 -0.0296937 0.0118838 

Experience of owner (in years) 0.0064778 0.0090149 0.72 0.472 -0.0111912 0.0241467 

Income from olives (%) -
0.0174835 

0.0114132 -1.53 0.126 -0.039853 0.004886 

Income from farming (%) 0.0113014 0.0056847 1.99 0.047 0.0001597 0.0224431 

Producing high quality products 0.3614931 0.2069177 1.75 0.081 -0.044058 0.7670443 

Protecting the environment for fu-
ture generations 

-
0.2932392 

0.1722911 -1.7 0.089 -0.6309235 0.044445 

Constant  -1.184381 1.300053 -0.91 0.362 -3.732437 1.363676 

 

4.5.5 Discussion and conclusion 

Eco-efficiency is often used to measure environmental performance of production units including 
farms. Though establishing eco-efficiency does not necessarily guarantee sustainability, it may be con-
sidered as a step in the right direction, since eco-efficiency indicates ways to maintain the same level 
of output while minimising environmental burdens.  

This study focuses on the estimation of the eco-efficiency of Cretan olive farms taking into account 
their main farming practices in terms of water and fuel use, fertilisation and pest management as well 
as soil management. To estimate eco-efficiency, we employ the DEA analysis, traditionally used to es-
timate technical efficiency of production units. This methodology allows us to use the DEA scores as a 
single aggregate indicator of eco-efficiency instead of multiple simple indicators. The degree of uptake 
of ecological practices is also considered in the analysis, since the results are presented for the total 
farms in the sample as well as for organic, conservation, low-input/integrated, medium input and 
agroecological farms.  

The results of the analysis indicate that, though some farm types perform well in some environmental 
indicators, they may perform poorly in some others, therefore making it difficult to decide on their 
overall environmental performance. This demonstrates the usefulness of the methodology imple-
mented in this study as a way to aggregate environmental burdens, consider substitution possibilities 
among them and facilitate the work of policy makers. One example from our study, is the case of the 
medium input farms, that although they perform poorly on most simple indicators their overall eco-
efficiency score is quite satisfying. What is also worth mentioning about the medium input farms is the 
fact that their technical efficiency was not found to be as high as their eco-efficiency. In other words, 
medium input farms have a higher environmental and not economic performance.  

On the other hand, organic farms seem to have a higher economic rather than environmental perfor-
mance, in terms of technical and eco-efficiency. Organic farms may be restricted to follow some prac-
tices or guidelines regarding the use of specific inputs (like inorganic fertilisers) but may be overusing 
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other inputs (like water or animal manure). This indicates that further investigation is required on the 
objectives and motives of organic producers. After all, the second stage regression analysis indicated 
that subsidies (which are significant in the case of organic farms) have a negative impact on eco-effi-
ciency. All the above findings need to be carefully considered in agricultural planning and policy mak-
ing.   

It should be however emphasised that further research is required regarding the eco-efficiency scores 
and their determinants. The role of farmers objectives and attitudes need further investigation, espe-
cially since it seems that the eco-efficiency scores are positively affected by objectives regarding the 
production of quality products and negatively affected by purely environmental objectives. This may 
well be an indication of the influence of consumer demands for quality (and eco-friendly) products on 
the cultivation practices followed in the farm.  

One limitation of the analysis is the use of revenues as opposed to value added to estimate the pro-
duction level. This path was chosen due to the weather conditions and the olive fly problems that 
farmers faced during the reference period that affected revenues and yielded negative profits in some 
cases, making it difficult to use other economic indicators in the DEA analysis. Future research maybe 
required to estimate how the use of other indicators like value added would affect the results of the 
eco-efficiency analysis, since cost elements would be more profoundly included in the analysis. For 
example, we would expect the eco-efficiency scores of medium input farms to be closer to their tech-
nical efficiency scores. Regardless of its limitations however, the analysis has demonstrated that eco-
efficiency is a useful concept, and its investigation can shed light into aspects of farming that are else 
neglected.  
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5 Bioeconomic modelling  

5.1 Development of a bioeconomic model of pasture-based livestock farms (Teagasc) 
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5.1.1 Introduction and description of case study region 

The growing population and emerging market trends for meat products are creating challenges and 
opportunities for the agricultural industry and in particular those temperate regions where ruminant 
based meat and dairy is the major product output. With European and national policy focus evolving 
to foster the competitiveness and sustainability of farming systems in Europe (e.g. Agro-ecological ap-
proaches to farming, EIP-AGRI, EU Green Deal) there is an increasing demand for micro level analysis 
of the environmental, financial and social performance of agricultural systems. This paper provides a 
case study of Irish sheep flocks aimed at investigating the sustainability of these ruminant meat pro-
duction systems from an environmental and economic perspective (Garnett et al., 2013).  

International marketing initiatives and eco labels are increasingly being used to promote the sustaina-
bility of production systems and certify the environmental impacts of value chains based on initiatives 
to improve the environmental performance of products (Chen et al., 2017; Bord Bia, 2016). At the 
same time, national strategies to increase the value of agricultural exports by growing agricultural pro-
duction pose environmental challenges (Buckley et al., 2019).  

This study explores these issues by comparing the farm level economic and environmental perfor-
mance of Irish sheep farms based on a bioeconomic model of the sheep production system using the 
nationally representative Teagasc National Farm Survey (NFS) panel data (Hennessy et al., 2016) and 
biological information linked to livestock. NFS data enable the evaluation of the farm level Carbon 
Footprints (CF) and land occupation for the range of Irish sheep flocks. The environmental performance 
of distinct sheep farming systems operating at different levels of production intensity and input use is 
presented and compared with key financial and technical performance outcomes. 

The purpose of this study is to develop a nationally representative modelling framework to estimate 
and compare the farm level profitability, carbon footprint and land occupation of ruminant grazing 
farms in Ireland. Farm level scenarios will capture the information on the economics (e.g. input, output 
prices etc), environmental footprint (farm Global Warming Potential) the institutional context (contri-
bution of direct payment supports etc) and farm environment conditions (e.g. spatial context, agro-
nomic constraints). 

5.1.2 Data and methods 

In order to estimate emissions and financial performance at a farm level this study employs NFS data 
which collects detailed production information on animal activities and associated costs, the area, 
yields and input costs of home-grown crops, and pasture inputs and costs.  

The study modelled the full sample of 3235 sheep farm enterprises (farm year records) over the 6 year 
period 2010 to 2015. 506 were classified as hill farms and 2729 lowland farms. The average farm size 
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was 50 hectares for hill farms and 42 hectares for lowland farms.  On average, lowland farms demon-
strate higher levels of technical performance across the range of parameters analysed. Hill farms are 
typically managed on upland rough grazing, have lower lambing and stocking rates than lowland 
breeds managed on higher quality pasture. Hill farms are, on average, larger than lowland farms with 
larger flocks but are relatively more extensive. Average stocking rates recorded were 7.1 and 8.9 
ewes/ha for hill and lowland farms respectively. Weaning rates were .9 lambs/ewe and 1.2 lambs/ewe 
respectively.  

In terms of inputs, hill farms are shown to exhibit slightly higher direct costs per unit output compared 
to lowland farms. In line with their more extensive nature, these farms get a higher proportion of DM 
intake in the form of grazed grass compared to lowland farms. Lowland farms on average spread more 
nitrogen fertiliser (92.4kg/ha vs 67.2 kg/ha) and use more fuel (34.6L/ha vs 26.7L/ha) per unit area 
than hill farms. 

This study performs a Life Cycle Assessment (LCA) of the environment outputs from Irish sheep farms. 
While the analysis presented in this study follows the ISO standard layout, the Carbon Footprint calcu-
lations represent a partial LCA.  

The CFs for sheep farms were calculated in this study according to a cradle to farm gate system bound-
ary. This is a holistic systems approach that aims to quantify the potential environmental impacts e.g. 
GHG emissions, generated throughout a product or processes life cycle within a defined boundary. 
Thus the analysis accounts for all GHG emissions from the farm up to the point of product sale from 
the farm (cradle to farm gate).  

The resources used and emissions related to sheep enterprises were quantified in the inventory anal-
ysis stage through a sheep farm systems model and crops sub model briefly described here. This crops 
sub model was developed to estimate emissions from crops used for livestock feed. Emissions factors 
were calculated based on input information gathered from national research and Teagasc production 
specialists (CSO, 2017a; DAFM, 2012; Phelan, 2017; Teagasc, 2011), IPCC (2006) guidelines and the 
international LCA literature (O’Brien et al., 2015; Nemeck et al., 2007).  

The farm (cradle to farm-gate) LCA analysis includes the emissions from livestock (enteric fermenta-
tion), inputs used on-farm (pesticides, fuel, phosphorus (P) and potassium (K) and ammonia nitrate 
fertilisers) along with the inputs used in the production of purchased feeds produced off-farm (pesti-
cides, fuel, P,K and ammonia nitrate fertiliser) and the emissions released in the manufacturing process 
of these same inputs (off-farm production processes).  

The land use change emissions for a representative sheep ration (0.23kg CO2 per kg concentrate dry 
matter fed) are estimated by computing the land use change emissions associated with the production 
of relevant constituent feed ingredients based on the associated crop information for source countries 
(Vellinga et al., 2013) and emissions factors from the Carbon Trust (2013), and are in line with the 
approach of O’Brien et al. (2015). Land area was quantified in hectares, including land required to 
produce home-grown forage and crops and land for imported feedstuffs. 

The climate change impact of GHG emissions from sheep production was calculated in terms of CO2 
equivalents using 100 year global warming potential (GWP) The Global Warming Potential (GWP) fac-
tors are a relative measure of how much heat a greenhouse gas traps in the atmosphere and was 
developed to allow comparisons of the global warming impacts of different gases. In this study IPCC 
(2006) GWP values are applied to determine the overall contribution of CO2, CH4 and N2O to total 
emissions. Accordingly, all GHG emissions calculated are estimated in terms of the reference gas CO2 
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equivalents where the GWP of 1 kg CO2 is 1, 1 kg CH4 is 25, and 1 kg N2O is 298, assuming a 100-year 
time horizon.  

The other resource use measure examined in this study is the equivalised land area occupied by sheep 
production systems. Land occupation was quantified in m2/kg of LW and included land required to 
produce homegrown forage (grass and grass silage or hay) fodder crops used for the sheep enterprise, 
and the equivalised land footprint of purchased bulkfeeds and imported feedstuffs (presented in hec-
tare equivalents). 

Analysis of economic performance is undertaken at the enterprise level and broken down by hill and 
lowland enterprises, taking into account their differential production systems. To benchmark the dif-
ferent sheep farming systems, a gross margin analysis is performed. Financial results are presented for 
the average of lowland, hill and all farms. Lowland farms are further ranked on the basis of gross mar-
gin per hectare, and grouped into three categories; the top third, middle third and bottom third of 
performing farms.  

5.1.3 Results 

Figure 1 describes the distribution of gross output across sheep enterprises over the sample period. 
The average value of gross output per hectare for the sample of sheep flock subsystems is measured 
relative to their forage area (hectares) and number of sheep livestock unit. The difference between 
the two measures is largely due to the difference in the average stocking rate across systems. Early 
season enterprises have the highest gross output in both unit measures (€1047/ha €530/lu). The higher 
per livestock output from the early season system is facilitated through indoor housing and a greater 
emphasis on more expensive, concentrate based diets required to meet the nutritional requirements 
of ewes lambing earlier in the season, when grass is in short supply (Flanagan et al., 2001). The pre-
dominant mid-season system has the second highest output per LU and per hectare (€849/ha, €442/lu) 
with farms typically lambing down in the spring with the onset of grass growth (Keady et al., 2009). 
The hill sheep systems have the lowest output per hectare output as would be expected, given their 
extensive nature and upland grazing. Blackface Mountain systems exhibit the lowest stocking rates 
(0.6ewes/ha) and output per unit (€153/ha, €262/lu) of all the systems analysed. 

 
Figure 1: Distribution of Gross Output and Stocking Rates by sheep Sub-System 
 

Lowland farms exhibit higher gross margins driven by significantly higher gross output per unit hectare. 
Hill farms are much more dependent on direct income support: of the €206/ha gross margin earned 
on hill farms over the period €110/ha or 54% of this is attributable to subsidy payments, whilst on 

0,0

2,0

4,0

6,0

8,0

10,0

12,0

0

200

400

600

800

1000

1200

Early Season Mid Season Mainly Store Black Face
Moutain

Cheviot

St
oc

ki
ng

 R
at

e 
Lu

 p
er

 h
ec

ta
r

M
ak

et
 G

ro
ss

 O
ut

pu
t p

er
 u

ni
t 

(€
)

Production System

Go per Ha
Go per Lu
stocking rate per ewe



  

LIFT – Deliverable D3.1  
 

211 
 

lowland farms almost 80% is earned from the market. Analysing midseason lowland farms, the top 
performing group earned an average gross margin of €937 per hectare; farms in the bottom group 
earned an average gross margin of only €198 per hectare. This means that the top producers earned, 
on average, almost 5 times more per hectare than their counterparts in the bottom group whilst a 
breakdown of the trend in gross margin (2000 – 2015) highlights that the gap between the top and 
bottom third of mid-season lowland lamb producers has been growing. The best performing farms can 
be seen to achieve significantly higher levels of output while simultaneously keeping a control over 
direct cost. Higher output levels are achieved through better technical performance and reflected in 
higher stocking rates and weaning rates. 

In terms of direct costs per hectare, feed costs represent the major cost item. Over the sample period, 
feed costs contributed on average over 73% of total direct costs across all sheep farming enterprises. 
If feed costs are broken down into its components, concentrate costs are the single largest expense 
item, contributing on average over 44% of direct costs across all enterprises for the same period. The 
share of expenditure attributable to concentrates is lowest in the top performing farms (41%) and 
highest in the bottom third of farms (45%) while the opposite is true for pasture costs (33% vs 29%).  

In line with expectations, grass represents the most important and cheapest feed on a cost per unit 
energy basis, contributing over 76% of energy supply to livestock and at a cost of little over one cent 
per unit energy across all farms. Concentrates is the second most important feed source, supplying 
12.3% of energy to livestock at a cost of 24 cent per UFL. This makes concentrate feed the most expen-
sive feed source.  

GHG emissions from sheep farms (Table 1) are expressed in terms of the Carbon Dioxide (CO2) equiv-
alent per kg of live weight equivalent of sheep produced, unlike previous LCAs of sheep farms which 
allocated emissions between products based on economic allocation (O'Brien et al., 2015). 

The average CF of lowland farms was estimated at 9.8kg of CO2-eq/kg LW, which was 13% lower than 
the average CF estimated for hill farms. The average CF of lowland farms was within the range previ-
ously estimated by O'Brien et al. (2015) whilst the CF of hill farms diverged significantly. All sheep farms 
analysed in this study operate grass based grazing systems. Estimates of the breakdown of energy 
supply from the range of feed stuffs support this and show that on average across all farms grass con-
tributed 76.4% of flock energy demands. As would be expected, given their more extensive nature, 
grass supplied a greater proportion of energy to livestock on hill farms (81%) when compared to low-
land farms (75.5%).  

Taking into account the carbon sequestration value of grassland reduces the carbon footprints on hill 
farms to 9.99kg of CO2-eq/kg LW (12% reduction) and lowland farms to 8.6kg of CO2-eq/kg LW (10% 
reduction). In line with O'Brien et al. (2015), the carbon sequestration rate had a relatively larger im-
pact on reducing emissions for more extensive farms. This is evident when comparing the average of 
hill to the average of lowland farms or average top and bottom performing midseason farms to the 
bottom performing one. 

Looking at the breakdown of emissions across all sheep farms (Table 2), animal activities represent the 
largest source, with Tier I estimates of enteric fermentation and manure management comprising 
(64%) and (6%) of total emissions respectively. Other emissions include those emissions from soils 
(14%) and total emissions associated with feed production (16%). A detailed breakdown of emission 
from feed production included emissions associated with inputs used in the feed production process 
(field processes, transport, manufacturing and processing of feed grains, mixed rations and forage) and 
land use change are presented in (Table 2). The GHG emissions associated with the cultivation, pro-
cessing, and transport of concentrate feed (but excluding non-recurrent land use change emissions) 
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were the largest, contributor of emissions associate with feed input provision 49% (7.8% of total emis-
sions). The off-farm emissions from land use change (LUC) associated with the production of Brazilian 
soybean meal (protein ingredient in representative concentrate feed) accounted for the next largest 
proportion of emissions from feed inputs at 20% (3.2% of total farm emissions), followed by on-farm 
emissions from artificial N fertiliser application at 11% (2.5% of total). 

Table 1: Carbon footprint (CF) of sheep meat production (kg of CO2 /kg LW)  

    Midseason Farms ranked by 
GM/ha  

All 
farms 

Hill Lowland Bottom Middle Top 

Carbon Footprint 9.88 11.33 9.84 10.47 8.44 7.47 
Carbon Footprint excluding Land 
use change1 

9.52 11.04 9.12 10.03 8.13 7.18 

Carbon Footprint with Carbon Se-
questration 

8.89 9.99 8.58 9.13 7.54 6.49 

1Nonrecurrent land use change emissions from the conversion of grassland to arable land and from the cultivation of 
South American soybean and southeast Asian palm concentrate feedstuffs 

Table 2: GHG emissions profiles of Irish sheep flock Diets 
 Bottom, middle, and top third of 

Midseason lowland farms 
ranked by gross margin/ha 

GHG emissions and 
source as CO2 equiva-
lent 

Emissions 
Location 

All Sheep 
Farms 

Lowland Hill Bottom 
Third 

Middle 
Third 

Top Third 

Methane (CH4 ) 
Livestock Activities 

       

Enteric Fermentation On-Farm 64.4% 62.4% 70.7% 58.7% 62.2% 64.1% 
Manure Management 
and excretion 

 6.2% 6.1% 6.3% 5.7% 6.2% 6.3% 

Nitrous oxide (N2O-N) 
Livestock Activities 

       

Manure storage and 
spreadings, & excre-
tion on pasture 

 13.6% 14.8% 10% 14.4% 14.7% 15.2% 

Nitrous oxide (N2O-N)        
Synthetic N fertiliser 
application 

On-farm 2.5% 2.8% 1.5% 4.1% 2.9% 2.2% 

N leaching  0.2% 0.2% 0.1% 0.3% 0.2% 0.2% 
Atmospheric deposi-
tion(6) 

 0.1% 0.1% 0.0% 0.1% 0.1% 0.1% 

Carbon Dioxide (CO2)        

Fuel Use (Diesel) On-farm 0.7% 0.7% 0.7% 1.1% 0.6% 0.5% 
Fertiliser Application 
(Urea  applied) 

On-farm 0.1% 0.1% 0.0% 0.2% 0.1% 0.1% 

Lime application On-farm 0.4% 0.4% 0.3% 0.6% 0.4% 0.2% 
LUC from on-farm ara-
ble land (home-grown 
feeds)1 

On-farm 0.5% 0.6% 0.1% 0.5% 0.5% 0.8% 
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Fertiliser Production 
(Urea, P, K, and Am-
monia Nitrate ferti-
liser applied) 

Off-farm 0.6% 0.6% 0.3% 0.9% 0.7% 0.5% 

Concentrate produc-
tion2 

Off-farm 7.8% 8.1% 6.7% 8.5% 7.8% 7.0% 

Carbon dioxide, CO2 
from land use change 
LUC3 

Off-farm 3.2% 3.3% 2.7% 3.5% 3.2% 2.8% 

Other Inputs4 Off-farm 0.5% 0.4% 0.8% 0.5% 0.3% 0.4% 
1Nonrecurrent land use change emissions from the conversion of grassland to arable land. 
2The GHG emissions associated with the cultivation, processing, and transport of concentrate feed, but ex-
cluding nonrecurrent land use change emissions. 
3Nonrecurrent land use change emissions from the cultivation of South American soybean feedstuffs used as 
a constituent in concentrate ration. 
4Emissions from the production of purchased forage, milk replacer, fuel, pesticides and plastic. 

5.1.4 Discussion and conclusion 

In the context of sheep farming, there are a number of differential production systems which provide 
a significant range of both market and non-market outputs, all of which must be taken into account 
when comparing the relative sustainability of systems (Ripoll-Bosch et al., 2013).  

Results of financial performance and feed analysis highlight that sheep farms operate grass-based pro-
duction systems and that the best performing lowland flocks are focused on the production and use 
of grazed grass as the cheapest feed source. Supplementary concentrate feed on the other hand is 
shown to be the most expensive feed per unit energy with poorer financial performing farms more 
reliant on it as a key source of nutrition. The more profitable lowland enterprises are characterised by 
higher technical performance, stocking and weaning rates, greater production intensity and greater 
emissions efficiency on a per unit basis and is in line with previous studies in comparable production 
settings (Hyland, 2016; Jones et al., 2014a; O’Brien et al., 2015). Improved technical performance is 
reflected in the average carcass output per hectare of 332 kilos on the top third of lowland mid-season 
farms, versus 167 kilos on the bottom third of farms. This higher level of lamb output per hectare, 
combined with tighter control of direct costs is reflected in higher enterprise profitability.  

In line with previous studies (Jones et al., 2014b), extensive hill production systems demonstrated 
lower overall emissions, lower production efficiency and higher GHG emissions per unit output. How-
ever, there are a range of other environmental sustainability measures that are not analysed in this 
study. O’Brien et al. (2015) also analysed nutrient surpluses, acidification and eutrophication as part 
of an LCA and found more intensive sheep farms had the greatest negative environmental impact for 
these factors.  This highlights the potential conflict between carbon efficiencies and other environmen-
tal objectives not analysed here (Jones et al., 2009; Maier et al., 2001). 

The farm level modelling framework developed in this study can be readily extended to estimate CFs 
for cattle and dairy production systems as recorded in the NFS. There is also the potential to develop 
the analysis in this study to produce a full LCA of sheep farms. This would require a Tier II estimate of 
Enteric Fermentation emissions in line with LCA protocols. Given the structure of NFS data, additional 
assumptions around animal performance, growth rates, and dry matter intake (DMI) would need to be 
made in conjunction with livestock specialists and in order to describe the farm level variability in live-
stock performance and related emissions more accurately.  
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systems Volume 187: https://doi.org/10.1016/j.agsy.2020.102992  

with some sections being identical to the original paper.   

 

5.2.1 Introduction 

Plot sizes and farm-plot distances affect the economic performance of agricultural production. Increas-
ing plot sizes provide economies of scale by reducing unproductive turning and driving times of field 
operations. A resulting reduction in input and labour requirements decrease average costs of produc-
tion (Herrmann and Papesch 1996; Jahns et al. 1983; Latruffe and Piet 2014; Looga et al. 2018; Lu et 
al. 2018). Increasing farm-plot distances have the opposite effect by increasing resource requirements 
and costs of field operations due to higher transport costs (Jahns et al. 1983; Kuhlmann 2015; Latruffe 
and Piet 2014). The impacts of plot sizes and farm-plot distances highly depend on the type and the 
number of field operations (Jahns et al. 1983). The type and the number of field operations as well as 
the amount of intermediate and final products transported depend highly on the crop rotation and the 
crop management (Kuhlmann 2015) and thus differ between conventional and organic farming sys-
tems. These differences are, for example, caused by restrictions on the use of synthetic fertiliser and 
a ban on chemical synthetic pesticides in organic production systems. As a result of the differences, 
economic effects of plot sizes and farm-plot distances likely differ between these farming systems and 
might drive economic performance gaps between conventional and organic farming systems.  

This study addresses a gap in the literature by analysing the effects of plot sizes and farm-plot distances 
on the economic performance in organic and conventional farming systems. In this context, a large-
scale sensitivity analysis on the effects of plot sizes and farm-plot distances on multiple economic in-
dicators is conducted. Thereby, we aim to assess if scale effects work differently in organic and con-
ventional farming systems, especially considering that organic production programs are typically more 
diversified with regard to crop production but are often operated as mixed farms (Britz 2019). As the 
conversion to organic farming can be associated with considerable changes in the farms production 
program, the whole farm management must be considered rather than changes of individual field op-
erations for a single crop. Therefore, this study is conducted at the level of the whole farm for three 
case studies, considering detailed definitions of activities for the different farming systems such as field 
operations with related machinery costs and intermediate resource requirements, yields and mone-
tary returns, including subsidies granted to organic production (Britz 2019).  

https://doi.org/10.1016/j.agsy.2020.102992
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5.2.2 Description of case study region  

As part of the National Sustainable Development Strategy, the German government aims to increase 
the share of organic farming on productive agricultural land from 9% in 2018 (BMEL 2018) to 20% by 
2030 (German Federal Government 2018). In 2018, 32,000 organic farms managed more than 1.5 mil-
lion hectares, of which 56% are permanent grassland and 42% arable land (BMEL 2018). Most of the 
arable land under organic production is dedicated to the cultivation of cereal grains, plants harvested 
green (including fodder legumes) and grain legumes (e.g. lupines, beans and peas) (Destatis 2017). 70% 
of the organic farms are engaged in livestock production, 75% of which produce cattle and 10% pigs.  

Table 1: Key attributes of the case study farms 

  Arable Farm Pig Fattening Farm Dairy Farm 
  Conventional Organic Conventional Organic Conventional Organic 
Farm size  ha 100 100 56 42 100 100 
Number 
of live-
stock 
places  

 

 2500 lay-
ing hens  800 240 100 105 

Crop 
shares  

% Sugar beet 
(35%) 
Wheat (25%) 
Barley (25%) 
Potatoes 
(15%) 

Grass-
clover 
(17%) 
Grain 
peas 
(17%)  
Triticale 
(17%) 
Potatoes 
(13%)  
Barley 
(12%) 
Wheat 
(8%)  
Spelt 
(8%) 
Pumpkin 
(4%) 
Grain 
maize 
(4%) 
 
Catch 
crop 
(30%) 

Wheat (46%) 
Barley (27%) 
Silage maize 
(27%)  
 
Catch crop 
(27%) 

Grain 
maize 
(25%) 
Field 
bean 
(20%) 
Triticale 
(20%) 
Barley 
(20%) 
Wheat 
(10%) 
Oat (5%) 
 
Catch 
Crop 
(15%) 

Grass-clover 
(32%) 
Permanent 
Grassland 
(15%) 
Grain maize 
(15%) 
Silage maize 
(12%) 
Rye (11%) 
Barley (7%) 
Wheat (5%) 
Oat (2%) 
 
Catch crop 
(10%) 

Grass-clo-
ver (75%) 
Permanent 
grassland 
(15%) 
Whole 
crop silage 
(10%) 
 
Catch crop 
(10%) 

Average 
farm-plot 
distance 

km 
0.5 1.1 2 

Average 
plot size 

ha 5.1 6 4 

Notes: Key attributes of the case study farms as reported in face-to-face interviews.  
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In the western German states of North Rhine-Westphalia and Lower Saxony, the share of organic farm-
ing in agricultural land is the lowest in Germany, at 6% and 4.7% respectively (BMEL 2020; German 
Federal Government 2018). We therefore analyse as case studies three farms located in Western Ger-
many. An arable farm, a pig fattening farm and a dairy farm are selected to cover the relevant farm 
types in this region. We collect with semi-structured face-to-face interviews relevant technical and 
economic information on crop and livestock production, covering for example the production program 
as well as prices and yields where available. Key results are reported in Table 1. All three farms have 
been recently converted from conventional to organic production such that we receive detailed infor-
mation about the farm program under both systems.  

5.2.3 Methods and Data 

The effects of plot sizes and farm-plot distances in conventional and organic farming systems are eval-
uated by linking big data on field operations to detailed case study data for a large-scale sensitivity 
analysis (see Figure A.1). The large-scale database from the Kuratorium für Technik und Bauwesen in 
der Landwirtschaft (KTBL) reports big data on necessary field operations with details on costs of ma-
chine applications and related machinery costs and intermediate input requirements, including, for 
instance, machinery depreciation and costs for maintenance, lubricants and fuel as well as details on 
labour requirements. The data is provided in detail for 145 crops under the conventional and organic 
farming system, considering distinct plot sizes and farm-plot distances as well as different mechanisa-
tion levels, amounting to more than 29.5 million data records (KTBL 2019b). Based on a regression 
analysis, we derive from there continuous functional relations of how costs and labour requirements 
of field operations depend on plot sizes and farm-plot distances. We consider plot sizes of up to 40 ha, 
farm-plot distances up to 30 km and three mechanisation levels (with tractors of 67 kW, 102 kW and 
200 kW as main machine).  

We estimate for each field operation 𝐹𝐹𝑂𝑂, crop C, mechanisation level 𝑀𝑀 and farming system 𝐸𝐸 the 
different per hectare resource requirements 𝑌𝑌 based on a polynomial regression function with plot 
size 𝑃𝑃 and farm-plot distance 𝐶𝐶 as explanatory variables: 

𝑌𝑌𝐹𝐹𝐹𝐹𝐶𝐶𝑆𝑆𝑆𝑆 = 𝛽𝛽0 + 𝛽𝛽1𝑃𝑃 + 𝛽𝛽2𝑃𝑃2 + 𝛽𝛽3√𝑃𝑃 + 𝛽𝛽4𝐶𝐶 + 𝛽𝛽5𝐶𝐶2 + 𝛽𝛽6𝑃𝑃𝐶𝐶 

 𝑌𝑌𝐶𝐶𝑆𝑆𝑀𝑀 = �𝑌𝑌𝐹𝐹𝐹𝐹𝐶𝐶𝑆𝑆𝑆𝑆
𝐹𝐹𝐹𝐹

 

In total, we provide 1.8 million regression functions covering 8 positions (such as fuel and labour re-
quirements and maintenance costs) of field operations for 145 crops.  

For each crop, the regression coefficients for labour and resource requirements are summed over the 
required field operations. This yields per hectare labour as well as intermediate resource requirements 
related to machine applications for a crop, as a function of plot sizes and farm-plot distances, differen-
tiated by three mechanisation levels. 

The detailed information of the case study farms are complemented by detailed planning data on costs 
and revenues of livestock and crop production. The economic data on livestock production provides 
details on revenues and costs as well as labour requirements, separated by the type of livestock and 
farming system (i.e. conventional or organic production) (KTBL 2019c). The information for each crop 
include data on yields and prices as well as expenses for agricultural contractors and direct costs (e.g. 
planting materials, fertilisers and pesticides) (KTBL 2019a). 

By linking the regression functions to the case study data as well as the economic data on livestock 
production as well as revenues and direct costs of crop production, the economic farm performance 
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of each farm is calculated as function of plot sizes and farm-plot distances Figure A.1. The functions 
are used to conduct a large-scale sensitivity analysis on the effects of plot sizes and farm-plot distances 
in the conventional and organic production system. Using this function, we generate a three-dimen-
sional surface area for each of the economic indicators. A linear regression on the three-dimensional 
surfaces is performed with plot size and farm-plot distance as explanatory variables to determine the 
average effects of plot sizes and farm-plot distances. The function is subsequently used to calculate 
the economic performance of the case study farms at observed plot size and farm-plot distance and 
to assess average effects of plot sizes and farm-plot distances. 

At the time the study was conducted, common indicators of farm performance had not yet been 
agreed upon. In this study, the economic farm performance is assessed considering multiple economic 
indicators. First, the farm profit is determined, with and without the consideration of subsidies granted 
for organic production. Costs of crop production are calculated including details on intermediate inputs 
requirements (e.g. fertilisers and pesticides) as well as costs of machine applications and related re-
source requirements, including labour costs. Finally, labour requirements arising in arable production 
and total labour requirements are determined.  

5.2.4 Results 

5.2.4.1 Economic performance 

5.2.4.1.1 Profits  
For all three farms, conversion to organic farming is in the observed period a profit increasing choice. 
Figure 1 shows the calculated economic performance of the three case study farms at observed plot 
sizes and farm-plot distances. A key reason for the higher profits under organic production is the large 
price premium for organic outputs. Before conversion, the average profits per hectare differ consider-
ably between the three case study farms, with the arable farm generating a positive profit, while the 
pig fattening and the dairy farm face negative. We find that the profit of the pig fattening farm is higher 
under the organic system even without considering subsidies. In contrast, the profit of the arable farm 
before subsidies decreases after conversion. The change in profits before subsidies for the dairy farm 
is limited. Once subsidies granted for organic production are considered, all three farms achieve higher 
profits compared to conventional production. In the dairy farm, however, profits remain negative un-
der the assumed wage costs of 20 € h-1. 

 
Figure 1: Overview on the calculated economic performance at observed plot size and farm-plot dis-
tance  
Notes: The economic performance is presented for the conventional and organic production program at plot sizes and farm-
plot distances reported by the farmers. Costs include the costs of on-farm labour, valued at 20 € h-1. 
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5.2.4.1.2 Costs of crop production  
We find that costs per hectare related to crop production are 8% lower in the organic system on aver-
age over the three case studies. The reduction reflects three drivers. First, the crop rotation shifts to-
wards crops requiring less inputs, for example through the introduced or expanded legume produc-
tion. Second, direct costs are reduced, mainly because costs for synthetic fertiliser and pesticides are 
omitted. Third, less frequent fertilisation and plant protection measures in organic farming cause a 
lower number of machine passes over the fields for most crops. This decreases expenses related to 
machine applications as well as related labour requirements and costs. However, the crop production 
costs of the arable farm slightly increase, reflecting a strong increase in labour requirements. 

5.2.4.1.3 Labour requirements 
Our results show lower labour requirements related to crop production after conversion in the pig 
fattening and dairy farm. For the arable farm, labour requirements in crop production however in-
crease, resulting in an increase of crop production costs after conversion. This reflects rather labour 
intensive weed control, harvesting and post-harvest processes for pumpkin as a new crop in the rota-
tion. The introduction of laying hens in the former specialised arable system without livestock adds 
considerably further labour requirements, such that in total 61.7 h ha-1 are required. Similarly, when 
including animal production, the total labour requirements of the pig fattening and the dairy farm 
increase after conversion. In those two farms, when switching from conventional to organic produc-
tion, labour savings in crop production are offset by increased labour requirements in livestock pro-
duction. 

5.2.4.2 Effects of plot sizes and farm-plot distances 

Table 2 presents the results of the linear regression on the three-dimensional surfaces for the three 
case study farms separated by farming system. The regression coefficients, i.e. the effects of plot sizes 
and farm-plot distances, measure the change in profits, costs and labour requirements for changes of 
one hectare in plot size and one kilometre in farm-plot distance, respectively. Given the relatively small 
effects, the intercepts show again that profits of organic production including subsidies granted to 
organic production are higher for all three case study farms.  

As indicated by the regression coefficients in Table 2, the average effects of plot sizes and farm-plot 
distances are in absolute terms stronger for conventional production in all three case study farms. This 
is especially relevant for the pig fattening farm: an increase in farm-plot distance by one kilometre 
provokes an increase in costs by 11.75 € ha-1 under conventional compared to 6.17 € ha-1 under organic 
production. Similarly, an increase in plot size by one hectare reduces costs by -3.42 € ha-1 under con-
ventional compared to -1.68 € ha-1 under organic production. On average over the three case study 
farms, the effects of plot sizes and farm-plot distances on costs and profits are 80% higher under con-
ventional production. One reason is the higher number of machinery passes for most crops in conven-
tional farming. This implies that overall costs increase stronger with increasing farm-plot distances and 
decreasing plot sizes compared to organic production.  

The effects on the labour requirements follow these trends. Labour savings in crop production from 
larger plot sizes and smaller transport distances are on average 74% higher in conventional farming. 
The total labour requirements of the analysed farms, except for the conventional production program 
of the arable farm, mostly relate to livestock production. This strongly reduces the relevance of the 
analysed effects at farm level. 
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Table 2: Average effects of plot size and farm-plot distance on profits [€ ha-1], costs [€ ha-1] and labour 
requirements [h ha-1] 

Notes: Coefficients of the linear regressions on the three-dimensional surfaces for conventional (conv) and organic (org) pro-
duction. Stated are the estimates (EST) and the respective standard errors (SE). (1) The coefficient is the same for profits and 
costs, however, the direction of the effect is inverse (2) impact of integrating livestock in production system, (3) reflects higher 
labour demands of specific requirements in organic livestock production 

5.2.5 Discussion and conclusions 

5.2.5.1 Economic performance of conventional and organic farming systems 

For any plot sizes and farm-plot distances considered in the study, organic farming remains the profit 
maximising choice for the case study farms when subsidies grated to organic production are consid-
ered. This is in line with previous studies finding higher profits in organic farming (e.g. Hanson et al. 
1997; Kerselaers et al. 2007; Nieberg and Offermann 2003). These observations contrasts with the still 
quite low share of 9% (BMEL 2018) of agricultural land under organic production in Germany. In this 
context, it should be considered that, first, organic farmers face higher production risks related to 
quantity and quality (Gardebroek et al. 2010). Second, higher profits for organic systems to a large 
extent reflect price premiums which depend on access to organic value chains. The latter might, how-
ever, not always be given. It has for example been reported in the media that organic dairies in Ger-
many do not award additional delivery contracts, preventing conversion (Landwirt 2020; Welt 2018). 

In addition to high price premiums, the higher profits of organic production partly arise from lower 
costs in crop production, mostly from reduced direct costs and from a lower number of passes over 
the field with consequences on labour and machinery requirements. Similarly, Mahoney et al. (2007) 
and Nemes (2009) stress the relevance of lower production costs on the higher profitability of organic 
production. 

 Arable farm Pig fattening farm Dairy farm 
 Conv Org Conv Org Conv Org 
 EST  

(SE) 
EST  
(SE) 

EST  
(SE) 

EST  
(SE) 

EST  
(SE) 

EST  
(SE) 

Intercept       
 Profit incl. org. subsidy 

[€ ha-1] 
 722  

(0.18) 
 1,313  

(0.21) 
 -48  

(0.10) 
 Profit without org. subsidy 

[€ ha-1]  
604  
(0.18) 

462  
(0.18) 

-253  
(0.34) 

1,053  
(0.21) 

-261  
(0.26) 

-272  
(0.10) 

 Costs of crop production 
[€ ha-1] 

967  
(0.18) 

1,005  
(0.18) 

759  
(0.34) 

704  
(0.21) 

922 
(0.26) 

719  
(0.10) 

Coefficients       
 Farm-plot distance (1) 

[€ ha-1] 
-7.24  
(0.01) 

-6.22  
(0.01) 

-11.75  
(0.01) 

-6.17  
(0.01) 

-13.98  
(0.01) 

-13.26  
(0.00) 

 Plot size (1) [€ ha-1] 1.91  
(0.01) 

1.44  
(0.01) 

3.42  
(0.01) 

1.68  
(0.01) 

2.19  
(0.01) 

0.66  
(0.00) 

Intercept       
 Total labour requirements 

[h ha-1] 
10  
(0.00) 

62(2)  

(0.00) 
20  
(0.01) 

34(3)  

(0.01) 
43  
(0.00) 

57(3)  
(0.01) 

 Arable labour require-
ments [h ha-1] 

10  
(0.00) 

16  
(0.00) 

8  
(0.01) 

8  
(0.01) 

9  
(0.00) 

8  
(0.01) 

Coefficients       
 Farm-plot distance [h ha-1] 0.17  

(0.00) 
0.14  
(0.00) 

0.25  
(0.00) 

0.11  
(0.00) 

0.24  
(0.00) 

0.22  
(0.00) 

 Plot size [h ha-1] -0.05  
(0.00) 

-0.03  
(0.00) 

-0.09  
(0.00) 

-0.07  
(0.00) 

-0.04  
(0.00) 

-0.01  
(0.00) 
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The labour requirements of organic crop production are lower for most crops. However, the often 
necessary switch to a more diversified crop rotation can also introduce labour intensive crops as ob-
served on our arable case study farm. The high labour requirements in livestock production of organic 
farming additionally provoke higher total labour requirements for all three case studies. This fits the 
findings of previous studies, revealing that organic farms face higher labour requirements per hectare 
and are managed more labour intensive (Delbridge et al. 2013; Jansen 2000; Offermann and Nieberg 
2000; Reissig et al. 2016). Finally, without considering subsidies granted for organic production the 
profit of the arable and the dairy farm decrease with conversion. This stresses the high relevance of 
subsidies to overcome income losses associated with the uptake of ecological approaches.  

5.2.5.2 Impact of effects of plot sizes and farm-plot distances on conversion decision 

The results of the study show the expected direction of the effects of plot sizes and farm-plot distances: 
larger plot sizes increase economic performance by reducing labour requirements and costs associated 
with crop production. In contrast, growing farm-plot distances drive up costs and labour requirements. 
Similar economic effects of plot sizes and farm-plot distances have been found for different regions 
(Latruffe and Piet 2014; Looga et al. 2018; Lu et al. 2018). Higher effects of plot sizes and farm-plot 
distances are found in conventional farming systems. This implies that costs savings from large plot 
sizes and small distances are stronger for conventional farms while adverse effects of small plots and 
large farm-plot distances are lower for organic farming systems. Nonetheless, independent of the plot 
size and the farm-plot distance, the profits are higher under organic production for our case studies of 
farms which converted recently to organic farming. This selection bias renders its likely to find a posi-
tive effect on profits, compared to analysing a sample of farms staying in the conventional system. 
Nevertheless, the economic benefits of conversion increase with decreasing plot sizes and increasing 
farm-plot distances. It can hence be concluded that incentives to switch to organic production are 
stronger in landscape settings where plot sizes are limited and joining plots to larger fields is hard. 
Further, organic farms have advantages when putting bids on smaller plots farther away from the 
farms. 

Currently, organic farming is unevenly distributed within Germany. Organic farming systems are more 
frequent in regions characterised by lower production intensities and greater land fragmentation 
(BMEL 2018; Früh-Müller et al. 2019; Petersen et al. 2020; Schmidtner et al. 2012).We shed light on 
the last factor: potential profit gains from switching to organic production are smaller on large plots 
and short farm-plot distances. In contrast, economic benefits of conversion are higher for farms oper-
ating in more fragmented land markets. It can thus be concluded that regional conversion rates are 
influenced by present spatial structures and plot sizes and farm-plot distances contribute to the spatial 
concentration of organic farms, which might motivate regionally differentiated subsidy rates. Land 
fragmentation thus impact economic considerations of the farmers conversion decision and accord-
ingly add new factors to the wide discussion on conversion (Kallas et al. 2010). Our results thus can 
contribute to a better understanding of the adaption of organic farming and a more targeted promo-
tion of organic farming systems. 

5.2.5.3 Implications on policy and research 

The aim of Germany's National Sustainable Development Strategy is to increase the share of organic 
farming to 20% of the productive agricultural land by 2030. A body of literature discusses the question 
of whether the expansion of organic farming should be spatial evenly distributed or whether a concen-
tration on certain locations or regions is favourable, c.f. (Taube et al. 2006). In intensive production 
areas, converting to organic farming can significantly improve environmental conditions (Früh-Müller 
et al. 2018). However, this requires higher subsidies to reflect differences in opportunity costs of con-
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version. The effects of plot sizes and farm-plot distances additionally reduce economic benefits of or-
ganic agriculture in intensively managed, low fragmented regions. This reinforces the need for higher 
incentives to overcome income losses associated with the uptake of ecological approaches. This 
stresses the importance of the farm and market context in the effectiveness of subsidies.  

The study is conducted based on case study analysis, giving first insights into the differentiated effects 
of plot sizes and farm-plot distances on the economic performance of conventional and organic farms. 
Clearly, a larger sample of farms from different regions is needed to generalize our findings. This is 
hampered by two important data limitations. First, as underlined by our case studies, switching from 
conventional to organic farming affects a farm in many aspects. An isolated analysis of the effects of 
plot sizes and farm-plot distances, as done in this study, requires observations before and after con-
version, with detail in farm management. Such observations are quite scarce in existing single farm 
records such as the Farm Accountancy Data Network (FADN). Second, an integrated analysis of the 
effects using large samples requires data on actual plot size and farm-plot distances of farms. However, 
data on land fragmentation are currently not part of official statistics (e.g. FADN and Farm Structure 
Survey).  
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5.2.7 Appendix: Supplementary material 

 
Figure 1: Overview of methodological approach 
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5.3 The impact of agri-environmental and climate measures on sustainable farm per-
formance – a German case study analysis (UBO) 

Julia Heinrichs, Wolfgang Britz 

 

UBO, Germany  

 

5.3.1 Introduction and description of case study region  

The European and German agricultural policy strives to reduce negative environmental externalities 
linked to agricultural production and to foster sustainable, environmentally sound agricultural prac-
tices. Under the second pillar of the Common Agricultural Policies and within the frame of the Euro-
pean Agricultural Fund for Rural Development EU member states can implement agri-environmental 
and climate measures (AECM). AECMs promote the uptake of farming practices which have a beneficial 
effect on the environment and climate, and go beyond legal and official requirements. The implemen-
tations of AECM by farmers are voluntary and subsidies compensate for associated additional costs 
and related income decreases. The measures aim to protect natural resources and to preserve biodi-
versity and landscapes, and to reduce burdens that have arisen in the past (EC 2019; Umweltbun-
desamt 2021). 

In Germany, measures that are eligible according to AECM and the level of funding are designed and 
implemented by the federal states. In the federal state of North-Rhine Westphalia (NRW), these 
measures include for example diversified crop rotations, extensive use of permanent grassland, culti-
vation of catch crops and the creation of buffer and flower strips. In 2019, more than 250.000 ha were 
devoted to AECMs, accounting for about 15% of the agricultural area in NRW (LANUV 2020; MULNV 
NRW 2020). This study analyses the economic and environmental impacts as well as the employment 
effects of selected AECMs in two conventional case study farms in NRW. 

5.3.2 Methods and Data 

The impact of the introduction of AECMs in conventional farming systems is assessed based on simu-
lation with the highly detailed bio-economic farm-scale model FarmDyn. FarmDyn provides a frame-
work to simulate economically optimal farm-level plans and management decisions, considering tech-
nical as well as work-time and financial constraints. In our study, the comparative-static version of 
FarmDyn is used. FarmDyn simulates material flows and quantifies agronomic and economic as well as 
environmental and social impacts of AECMs and their trade-off. FarmDyn builds on mixed integer lin-
ear programming and is realised in GAMS (Britz et al. 2016). A complete documentation of FarmDyn is 
available online (Britz et al. 2019). 

The impact of the introduction of AECMs is assessed at the level of the whole farm for two case studies. 
We consider two different farm specialisations by analysing an arable crop farm and a dairy farm lo-
cated in NRW. Key attributes are reported in Table 2. We define a baseline scenario without the op-
portunity to participate at AECMs, where both comply with the greening regulation and the German 
nitrate directive. In the AECM scenario, we consider AECMs and the corresponding subsidies in NRW 
which relate to catch crops, flower strips and the implementation of diversified crop rotation. The 
implementation of AECMs aims at encouraging the farms to adapt ecological approaches and to shift 
the farm towards an environmentally friendly farming system. The impact of the uptake of ACEMs on 
the farm performance is assessed using common indicators as agreed in the LIFT project:  
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Table 1: Indicators 

Economic farm performance  Environmental performance indica-
tors 

Employment performance 

 Profitability indicators 
Partial productivity indica-
tors 
Output and input indicators 

 Ratios of input use 
N and P balances 
Pressure indicators (e.g. N-
Leaching) 
LCA-indicators 
Biodiversity indicators 

 Type of work 
Off-farm work 
Leisure time 
Labour distribution over 
months 

 

5.3.3 Results 

5.3.3.1 Production program 

In the baseline scenario without the possibility to participate at AECMs, both farms comply with the 
greening regulations. The arable farm devotes 5% of its area to idle while the dairy farm implemented 
catch crop production. After implementing AECMs as voluntary policy measure, both farms introduce 
10% of flower strips to the farm. Thereby, flower strips substitute against rape seed production. On 
the dairy farm, the crop share of winter wheat is additionally reduced. Following a slight expansion of 
the herd size, the acreage of silage maize slightly extended. 

Table 2: Key attributes of the case study farms 

 Arable Farm Dairy Farm 
 Without AES With AES Without AES With AES 

Farm size 60ha 100ha  
(60ha arable land, 40ha grassland) 

Livestock   132 dairy cows 133 dairy cows 
Crop shares  Wheat (65%) 

Barley (15%) 
Rape seed 
(15%) 
Idle (5%) 

Wheat (65%) 
Barley (15%) 
Rape seed (5%) 
Idle (5%) 
Flower strip 
(10%) 

Wheat (56%) 
Silage maize 
(36%) 
Rape seed (8%) 
 
Catch Crops 
(17%) 

Wheat (53%) 
Silage maize 
(37%) 
Flower strip 
(10%) 
 
Catch crops 
(17%) 

 

5.3.3.2 Economic performance 

Table 3 shows that for both farms, participation in AECMs is increasing the profit considerably. A de-
crease in sale revenues is compensated by a decrease in variable costs and the additional subsidies. 
Thereby, the share of subsidies on profits increases from 39% to 51% and from 17% to 20% on the 
arable and dairy farm respectively. Capital requirements remain quasi constant. 
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Table 3: Supportive economic indicators 

 Arable Farm Dairy Farm 
       In 1.000 € Without AES With AES Without AES With AES 
Profit 46 49 181 185 
Premium 18 25 30 37 
Sale revenues 103 95 473 466 
Variable costs 63 59 206 203 
Capital 13 13 116 117 

 

Figure 1 shows the calculated profitability of the two case study farms. When subsidies are considered, 
the profitability of the two case study farms increases not only marginally with the implementation of 
AECMs. The increase is stronger when remuneration of owned production factors (imputed interest, 
labour and rent) is not considered. Without the consideration of subsidies, the profitability of both 
farms decreases, as expected. 

  

Figure 2: Private and public revenue cost ratios, with and without the consideration of remuneration of 
owned production factors 
The partial productivity is calculated for four different inputs: land, labour, capital and costs of inter-
mediate inputs (Figure 2). On the arable farm, for all inputs, partial productivity increases with the 
implementation of AECMs. This not only reflects increased profits, but also a decrease of on-farm la-
bour and intermediate inputs. On the dairy farm, a large share of revenues and costs is devoted to 
livestock production which is not affected by the AECM on arable land, reducing the size of the overall 
effects. In addition, the slight increase in herd sizes increases input requirements in livestock produc-
tion. This reflects labour saving effects from the AECMs in crop production. Still, the productivity for 
all inputs increases with the implementation of AECMs.  

  

Figure 3: Partial productivity for land, labour, capital and intermediate inputs  
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5.3.3.3 Social Performance (Labour requirements) 

We find labour requirements in crop production decreasing with the introduction of AECMs (Table 4). 
On the arable farm, the introduction of flower strips mainly substitutes against the production of rape 
seed, associated with higher labour requirements. The reduced labour needs in crop production stip-
ulate more off-farm work. This goes along with slightly reduced leisure time, but reduces labour peaks 
in certain months (Figure 3).  

Table 4: Labour requirements  

 Arable Farm Dairy Farm 
Labour requirements Without 

AECM With AECM Without AECM With AECM 

Crop production 478 443 1274 1245 
Farm management 515 512 1575 1580 
Herd management   4351 4376 
Off-farm work 486 575   
Leisure time 1041 990 1440 1440 

 

Likewise, labour requirements in crop production on the dairy farm are reduced with the participation 
in AECMs. Flower strips substitute against labour intensive rape seed and winter wheat production. 
The reduced labour requirements in crop production allow for a slight increase in herd size. This results 
in a slightly more even distribution of labour demands over the year, as labour requirements decrease 
in months with high labour needs in arable production and increase in months where labour is mainly 
used in livestock production. 

  

Figure 4: Distribution of on-farm work over month 
5.3.3.4 Environmental farm performance  

The introduction of AECMs results in a considerable decrease in input requirements on both farms 
(Figure 4). The substitution of rapeseed by flower strips reduces the nutrient and pesticide require-
ments per hectare. On the dairy farm, a slight expansion of the herd size provides additional organic 
nutrients, which helps to substitute mineral fertilisers but increases the costs of bought feeds at farm 
level. Compared to the arable farm, the dairy farm requires a lower level of pesticides per hectare and 
relies less on mineral fertilisers. 
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Figure 5: Ratios of input use per hectare 
The conversion to a more extensive crop mix due to the integration of flower stripes combined with 
the reduced application of mineral fertilisers results in an improvement of pressure indicators (Figure 
5). First, we observe a slight reduction of phosphorus erosion. On the arable farm, nitrogen leaching 
considerably decreases with the introduction of AECMs. In contrast, the improvement in nitrogen 
leaching is smaller on the dairy farm, the overall level being however substantially lower. The humus 
balance of both farms is negative. With the introduction of AECMs the humus balance improves as less 
harvested products are removed. 

  

Figure 6: Pressure indicators  
In addition, a life cycle assessment is performed, determining yearly emissions of the farm including 
different pollutants, such as greenhouse gas emissions, nutrient as well as particulate matter emis-
sions. Thereby, emissions linked to intermediate inputs are considered. On the arable farm, the imple-
mentation of flower strips results in a considerably reduction of emissions (Figure 6). The effects on 
greenhouse gases result in a decrease of the global warming potential by 11%. Emissions of ammonia 
and further nitrogen oxides are reduced by 8% and 15%. Further, particular matter (PM2.5 and PM10) 
emissions decline by 3% and 5%, respectively. 

The emissions of the dairy farm mostly relate to livestock production, strongly reducing the size of the 
analysed effects compared to the arable farms. The small increase in herd size results in slight increase 
in methane (CH4) emissions. Thus, even though CO2 and N2O emissions are reduced by 10% and 2% 
respectively, the decrease in the overall global warming potential is quite small at 0.2%. The emissions 
of particular matter are reduced by 0.5% and 4% (PM2.5 and PM10), however, the emissions of total 
suspended particles (TSP) slightly increase by 0.5%.  
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Figure 7: LCA indicators  
Finally, the effect of AECMs on biodiversity is assessed using three different indicator frameworks (We-
ber et al. 2021): the Paracchini & Britz framework (Paracchini and Britz 2010), the SMART index 
(Schader et al. 2016) and the SALCA method (Jeanneret et al. 2009). On the arable farm, all three 
frameworks suggest a distinct increase in contributions of the biodiversity, respectively a reduction in 
farming practices which are harmful to biodiversity (Figure 7). While the indicator of Paracchini and 
Britz (2010) indicator increases by 10% with the introduction of flower strips, the changes of the 
SMART indicators are considerably higher. The species, ecological and genetic biodiversity of the 
SMART framework increase by 54%, 59% and 75%, respectively, resulting in a 64% increase in the over-
all biodiversity. According to the highly detailed SALCA framework, the implementation of flower strips 
has a particularly beneficial effect on grasshoppers and butterflies. In contrast, the effect on small 
mammals and ground beetles is rather limited. Overall, the level of biodiversity increases by 10% in 
the SALCA framework.  

 
 

Figure 8: Biodiversity indicators of the arable farm 
Similar effects on biodiversity are observed with the introduction of flower strips in the dairy farm 
(Figure 8). According to the Paracchini & Britz and the SMART framework, the biodiversity of the farm 
increases by around 5%. Similar to the arable farm, the SALCA index reveals that the introduction of 
flower strips is beneficial to a diverse group of species, resulting in an overall increase of biodiversity 
of 6%. According to the SMART and the SALCA frameworks, the dairy farm shows a generally higher 
level of biodiversity compared to the arable farm. This is partly due to the high proportion of grassland. 
Although the relative effect is higher for the arable farm, the changes in indicators are similar in abso-
lute terms in both farms.  
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Figure 9: Biodiversity indicators of dairy farm 

5.3.4 Discussion and conclusions 

This study assesses economic, environmental and employment effects associated with the implemen-
tation of AECMs on two case study farms in Germany. By analysing an arable and a dairy farm we 
address effects of different farm specialisations. The implementation of AECMs as voluntary policy 
measure induces both farms to introduce flower strips and thus, to extensify their crop rotations. The 
economic as well as environmental sustainability of both case study farms improves while the applica-
tion and dependency on external inputs, such as mineral fertilisers and pesticides, in crop production 
is reduced. The use of external inputs and the environmental impact as well as economic parameters 
of the dairy farm mostly relate to livestock production, which leads to an overall lower impact com-
pared to the arable farm. 

The extensification of arable cropping reduces labour requirements in crop production and reduces 
labour peaks in months with high labour requirements in arable production. On the arable farm, the 
released time is used for off-farm work, while on the dairy farm the herd size is expanded. This reduces 
the beneficial effects of AECMs on the environmental status in the dairy farm. Our results confirm that 
AECMs, as intended, can foster the adaption of ecological approaches and shift the farm towards an 
environmentally friendly farming system. Results suggest that the size of these effects depends on the 
farm type. However, the improvements in environmental status are accompanied by an increased de-
pendency on subsidies and a reduced production of cash crops as a source for food, feed and fibre.  
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From the research article published in Q Open:   

Heinrichs J, Jouan J, Pahmeyer C, Britz W (2021) Integrated assessment of legume production chal-
lenged by European policy interaction: A case-study approach from French and German dairy farms. 
Q Open 1: https://doi.org/10.1093/qopen/qoaa011  

5.4.1 Introduction  

By shifting the farm towards low input production, increased legume production can be assimilated to 
an ecological approach. First, legumes can substitute for protein-rich meals as feed, limiting the im-
ports of crops associated with the loss of natural habitats (Sasu-Boakye et al., 2014). Second, as leg-
umes can fix atmospheric nitrogen (N), they can limit the use of synthetic N fertiliser, and thus reduce 
greenhouse gas (GHG) emissions (Peoples et al., 2009). Third, they regulate pests by breaking the cycle 
of weeds and diseases, leading to reduced pesticide application (Angus et al., 2015; Nemecek et al., 
2008). However, legume production is still low in the European Union due to low profitability at short 
term and high transaction costs (Jouan et al., 2019).  

Since 2014, European member states can establish Voluntary Coupled Support (VCS) for legumes un-
der Pillar I of the Common Agricultural Policy (CAP). France introduced VCS for legumes, reaching 145 
million euros in 2017 (European Commission, 2017), but Germany did not. This might explain why the 
French area of legumes nearly doubled between 2013 and 2017, reaching 3% of UAA, but only in-
creased by 35% in Germany. Interestingly, the share of legumes in arable land in France is half as large 
in regions specialised in livestock production compared to regions specialised in arable crops (Eurostat, 
2018). This may be due to the French implementation of the Nitrates Directive (latter called “French 
ND”) (91/676/CEE), which prohibits manure application on most legumes, discouraging their produc-
tion on farms with high stocking densities (Caraes, 2018). The German implementation of the Nitrates 
Directive (latter called “German ND”) allows the application of manure on legumes as long as the man-
datory N fertilisation planning at farm scale is respected. 

This study aims at assessing the impacts of key policy measures affecting legume production on the 
uptake of legume production in Europe: VCS for legumes and the national implementation of the ND. 
By covering important agri-environmental legislation policies relating to switches in farming systems 
and analysis subsidy rates for individual crops to foster more extensive farming practices this study 
follows scenarios proposed in Milestone 13 (Britz, 2019). By including various environmental and eco-
nomic indicators, our focus is set on the impacts on the sustainable farm performance. In particular, 
the interaction between these measures is addressed, since VCS aims at fostering legume production, 
whereas the ND can potentially constrain it by regulating N supply. By comparing in detail a French 
and a German representative case study farm different farm, economic and legislative contexts are 

https://doi.org/10.1093/qopen/qoaa011
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considered. Further, by conducting a sensitivity analysis on different input and output prices, the policy 
impact is assessed in different economic contexts.  We employ the bio-economic programming farm-
scale model FarmDyn (Britz et al., 2014), to quantify agronomic, economic and environmental impacts 
of increasing legume production.  

5.4.2 Description of case study region  

We analyse as case studies one French and one German intensively managed dairy farm located in 
Pays de la Loire (PDL) in France and North Rhine-Westphalia (NRW) in Germany (Table 1). These two 
regions are characterised by intensive livestock production under temperate climate. The dairy farms 
were chosen as they combine salient features for the analysis: high quantities of manure produced per 
ha of land; the possibility of using both grain and forage legume as feed; and compared to pig farms, 
more constrained feed choices linked to structural characteristics of the farm (e.g., part of fodder 
area).  

Table 1: Description of the dairy farms implemented in the FarmDyn model 
 French farm German farm 
Arable land (ha) 49 60 
Grassland (ha) 27 20 
Number of dairy cows 62 75 
Stocking rate (cow.ha-1) 0.82 0.94 
Breed Holstein Holstein 
Milk yield (kg.cow-1.year-1) 8,600 8,800 
Crops  Grassland, wheat, silage maize Grassland, wheat, silage maize 

 

5.4.3  Method  

FarmDyn is a highly detailed bio-economic farm scale model, building on mixed integer linear program-
ming. It provides a framework for the simulation of economically optimal farm-level plans and man-
agement decisions, as well as related material flows and environmental indicators. FarmDyn maximizes 
the farm net present value under various constraints. A complete documentation of FarmDyn is avail-
able online (Britz et al., 2019). In our study, the comparative-static version of FarmDyn is used. 
FarmDyn maximizes the farm net present value under (1) the farms’ production feasibility set, (2) 
working-time and (3) liquidity constraints, and (4) environmental and policy restrictions. In our study, 
the comparative-static version of FarmDyn is used. The machinery pool used for the necessary field 
operation to grow legumes is already available, as it is also required to manage the observed bench-
mark crop rotation and investment costs in buildings and machinery are annualised. 

Mathematical programming models represent a valuable tool to analyse technical changes or the in-
troduction of (new) crops, as they describe in detail farm management and investment decisions (Britz 
et al., 2012; Jacquet et al., 2011). Bio-economic models quantify both economic and environmental 
indicators and their trade-off by accounting for joint production of agricultural outputs and environ-
mental externalities (Janssen and van Ittersum, 2007). At farm scale, bio-economic models have the 
advantage of simulating in detail the decision-making process of the farmer, considering technical as 
well as work-time or financial constraints. This explains their frequent use in European policy impact 
assessments (Reidsma et al., 2018). 
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We studied scenarios at the farm scales where the farm types chosen introduce extensification steps, 
i.e., increase their production of legumes (Britz, 2019). We define a baseline scenario (VCS0) with no 
VCS for legumes and the national implementation of the ND on each farm: the case study farms are 
thus conventional farms complying with the greening regulation. By increasing the legume production, 
we aim at shifting the farm towards low input production. In the first scenario (VCS100), we implement 
a VCS for legumes in both countries, keeping the national implementations of the ND. This allows to 
assess the impact of VCS under different legislative contexts. Even though the total VCS budget for 
legumes is stable among years in France, the VCS per hectare depends on the legume variety and on 
the total area of legume cultivated during the year. Therefore, we implemented the minimum level 
established in France: 100 €.ha-1 for peas, faba beans and alfalfa. In the second scenario (VCS100ge), 
the German ND is additionally introduced on the French farm. Lastly, we define a set of scenarios 
where the VCS per hectare is increased on both farms in increments of 10%, starting from 110 €.ha-1 
to 300 €.ha-1 (VCS110 to VCS300), under the French or the German ND on the French farm, and the 
German ND on the German farm. 

In order to get a first impression on the impact of the uptake of ecological approaches on the economic 
and environmental farm performance, the study at hand was conducted at the beginning of the project 
period. At this stage, the LIFT farm typology has not yet been developed and a classification of the case 
study farms as well as the policy measures according to their degree of ecological approaches could 
not be conducted in consistent manner to the project. Also, at the time the study was conducted, 
common indicators of farm performance had not yet been agreed upon.   

The main indicators included in our study are:  

- Total farm profit 
- Contribution of subsidies (i.e., VCS) to profit  
- Low input indicators:  

o Protein self-sufficiency 
o Input quantity of mineral fertiliser and manure 

- Additional environmental indicators: 
o Global warming potential (GWP) of the farm 
o Indicator of nitrogen leaching (latter called “N leaching”) 

5.4.4  Data  

In the framework of this study, three legumes are implemented to the FarmDyn model: peas, faba 
beans and alfalfa (Table 2),allowing the introduction of leguminosae crops in the existing conventional 
farms (Britz, 2019). Data on yields and on input and output prices for legumes and other crops are 
extracted from public statistics and professional agricultural press) (AMI, 2019; French Ministry of Ag-
riculture, 2018; IFIP, 2017, p. 2017; IT.NRW, 2019; KTBL, 2009). German input prices for three legumes 
and concentrated feed are calculated by taking the buying prices for wheat and soybean meal as a 
basis to determine their value as animal feed, following the method available at DLR Westerwald Os-
teifel (2011). Peas and faba beans can either be used as feed or sold as cash crops, while alfalfa can 
only be used as feed. Overall, acquiring data on the input price, whether soybean meal or legumes, 
was our main difficulty since there is no public database on this subject. An innovative project at the 
European scale could therefore be carried out to compensate for this lack. 

The effectiveness of implementing VCS for legumes and spreading manure on these crops is assessed 
in different economic contexts: based on a sensitivity analysis different price levels are considered. It 
covers the selling price of wheat and the buying prices of soybean meal and of three concentrated 
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feeds as the main substitutes for legumes (Charrier et al., 2013). For each tested policy scenario, 1,000 
price samples are randomly drawn out of calculated price ranges using Latin Hypercube sampling. 
Thereby, the correlation between the prices from the observed price series  are considered (Eurostat, 
2019). For each price sample, FarmDyn simulates the optimal farm-level plan by maximising the net 
present value. The sampled results are used in a descriptive statistical analysis to determine the per-
formance of key indicators under the considered price ranges. 

Table 2: Characteristics of legumes implemented in the FarmDyn model 
  Alfalfa Faba bean Pea 

Yield (t.ha-1) France 10.2 3.0 4.1 
Germany 8.5 4.2 4.7 

Selling price (€.t-1) France - 208 212 
Germany - 177 198 

Buying price (€.t-1) France - 270 246 
Germany - 297 306 

N from mineralisation of residues (kg N.ha-1) France 25 30 20 
Germany 20 10 10 

 

5.4.5 Results 

5.4.5.1 Legume shares and manure spreading 

In the baseline scenario (VCS0), both farms produce legumes to comply with the EFA requirement: 
they represent 5% of the arable land on both farms (Table 3). When the VCS per hectare gradually 
increases from 100 €.ha-1 to 300 €.ha-1, the legume share continues to increase (Figure 1). On the 
French farm, under the French ND, the legume share grows consistently until it reaches its maximum 
of 34% of arable land in VCS260: at this stage, the need to distribute all the manure prevents further 
increases of grain legumes on which manure application is prohibited. However, under the German 
ND where manure can be distributed also to grain legumes, the overall legume share is higher and 
reaches 45% of arable land in VCS300. On the German farm, the legume share slowly increases to reach 
a maximum of 28% in VCS300 (Figure 1). As on the French farm, grain legumes (faba bean) substitute 
for wheat at quasi-constant maize production. The lower increase on the German farm is mainly due 
to the high prices and yields of wheat, which increase the opportunity costs of legumes. 
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Figure 1: Share of legumes and quantity of manure spread on grain legumes (medians), per farm and implemen-
tation of the Nitrates Directive (ND), under the Voluntary Coupled Support (VCS) scenarios for legumes 

 

5.4.5.2  Input use and protein self-sufficiency 

The increase in legume production decreases the use of two major inputs. First, legumes produced on 
the farm substitute purchased feed and thus increase the farms protein self-sufficiency (Figure 2): from 
67% to 71% on the French farm under French ND, and to 74% under the German ND. On the German 
farm, the increase in protein self-sufficiency is particularly high: from 60% to 71%. On both farms, most 
legumes are used as feed and are not sold to the market. This reveals a better profitability of legumes 
as intermediate goods (i.e., own-produced feed) than as final goods (i.e., cash crops). 

The second input saving effect is related to synthetic N fertiliser. Under VCS300, its use is reduced by 
73% and 81% on the French farm, respectively under the French and the German ND, and by 66% on 
the German farm compared to the baseline scenario. This reflects that legumes provide N and that the 
overall demand for N is lower as less wheat is produced, a crop with high N need. 

Economic and environmental farm performance 

The increase in the legume share leads to a slight improvement in environmental indicators on both 
farms (Figure 2), which partly reflects the associated decrease in input use. On the French farm, reduc-
tions in N leaching differ between the two NDs. Under the French ND, N leaching decreases almost 
continuously to reach a maximal decrease of 16% in VCS300, whereas, under the German ND, it de-
creases only by 5%. This gap is due to the spreading of manure on grain legumes, provoking their over-
fertilisation and thus, additional N leaching. The GWP decreases by 5% in VCS300 under the French ND 
and by 2% with German ND. The lower decrease under the German ND reflects two factors: higher 
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input purchases and a higher production of alfalfa that causes emissions through the dehydration pro-
cess.  

The profit of the French farm slightly increases by 4%, with a simultaneous rising revenue from VCS 
under both NDs. However, the total VCS allocated under the German ND is higher than under the 
French ND (as the legume share is higher). The share of VCS at the farm profit is thus higher under the 
German ND, reaching 7.4% compared to 5.7% under the French ND in VCS300. Since the simultaneous 
decrease in GWP is lower, the GWP abatement costs diverge widely between the NDs: under the 
French ND, they reach 26 €.tCO2eq in VCS100 and 130 €.tCO2eq in VCS300, while under the German 
ND, they reach 190 €.tCO2eq in VCS100 and 1,040 €.tCO2eq in VCS300. 

On the German farm, the improvement in environmental indicators is similar. N leaching decreases by 
5% under VCS300 and GWP by 7%. At the same time, the farm profit slightly increases by 3%, the share 
of VCS on the profit reaching 4.4% in VCS300 and thus being lower than on the French farm. Even if 
the decrease in GWP on the German farm is similar to the decrease on the French farm under the 
French ND, abatement costs are hence far lower, reaching a maximum of 81 €.tCO2eq in VCS300 but 
only 12 €.tCO2eq in VCS100. At this stage, the abatement costs on the German farm are lower than the 
prices of European Emission Allowances (observed spot prices in 2019 range between 18 €.tCO2eq to 
30 €.tCO2eq) (European Commission 2020). On both dairy farms, methane from enteric fermentation 
is the main source of GWP. 

5.4.6 Discussion and conclusions  

This study is the first one that assesses the interactions of two key policy measures affecting legume 
production in Europe: VCS for legumes and the national implementation of the ND. In particular, it 
addresses the issue of interacting policy measures that, on the one hand, aim to promote legume pro-
duction and, on the other hand, potentially constrain their production by regulating N supply. In doing 
so, this study provides an exemplary assessment of how policies influence the uptake of ecological 
approaches and impact the environmental and economic farm performance. This work is of im-
portance for modelling the switch from conventional to organic farming, as legumes are a cornerstone 
in organic systems to provide nitrogen (Britz, 2019). 

We found that relatively low VCS of 100 €.ha-1 represent an effective tool to provoke a first increase 
in legume production. Although further research is needed to get a wider picture of the impact of such 
coupled support, this finding is in line with the recent study of Cortignani and Dono (2020) who inves-
tigate levers to develop rotation with legumes as part of the next CAP. However, medium to high VCS 
must be implemented to reach the shares of legumes targeted in the study of Cortignani and Dono 
(2020), which raises questions in terms of economic efficiency of VCS. Thus, we recommend a combi-
nation with other measures that lower the opportunity costs of legumes in order to foster their pro-
duction. In particular, implementing a tax on N synthetic fertiliser to internalize their negative exter-
nalities might be an interesting option to promote legume production on farms (Henseler et al., 2020). 

Our study shows that large legume shares induced by high VCS do not lead to substantial environmen-
tal benefits in the analysed dairy farms. This provides a complementary picture to most other studies 
that focus on legumes on arable farms. Our findings suggest that the impacts of crop diversification on 
environmental sustainability of livestock farms is limited. However, the inclusion of other indicators, 
in particular indicators oriented toward biodiversity, might revise this conclusion. The limited impacts 
reflect that a large part of the externalities analysed in this study are related to the herd itself: nitrogen 
leaching and emissions from manure handling, and enteric fermentation represent the main source of 
climate-relevant emissions. This suggests more ambitious agro-environmental measures that directly 
target animal production, such as stricter regulations in terms of livestock density or manure handling. 
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Similarly, other current policies, such as Greening, seem also to reach limited results in terms of im-
proved environmental status (Gocht et al., 2017). In these views, the Green Deal may represent a 
unique opportunity to improve the sustainability of this essential economic sector (Peyraud and Mac-
Leod, 2020). 

Depending on the level of support and input prices, allowing manure spreading on grain legumes on 
the French farm, as possible under the German ND, can increase the legume share by up to 7 percent-
age points. However, it does not lead to substantial improvements of environmental indicators. Thus, 
this policy change can be justified only by other goals such as improving protein self-sufficiency.  

Even if the improvement in environmental indicators is limited, we still observed considerable de-
creases in N-rich input uses. High levels of VCS combined with the possibility of spreading manure on 
grain legumes leads to a considerable decrease in the use of synthetic N fertilisers and soybean meal. 
Notably, reduced imports of soybean and its meal are on the European political agenda in the context 
of so-called “imported deforestation” (European Parliament 2011; Pendrill et al. 2019). However, ex-
isting WTO regulation makes it impossible to directly limit imports of soybean. Initiatives from private 
stakeholders might instead encourage farmers to grow legumes. For example, the development of 
certified GMO-free milk, produced from animals fed with legumes produced locally, represents an in-
teresting lever to increase the profitability of legumes as feed, while improving the protein self-suffi-
ciency of farms (Jouan et al. 2020b). However, this innovation must be supported by policies to ease 
processing of legumes at farm level, such as investments in specific storage and improved sorting (Me-
ynard et al., 2018). 

Without the introduction of VCS, the results indicate that both farms produce legumes only to meet 
the EFA requirement. Here, legumes cannot compete with their main substitutes at farm level: Wheat 
as output and soybean meal and concentrate as input. However, the results of the sensitivity analysis 
suggest that the profitability of legume production is highly dependent on the economic context: even 
without the introduction of VCS high shares of legumes are achieved in certain price contexts. The 
introduction of VCS for legumes to foster more extensive farming practices increases profitability of 
legumes, rendering cultivation more independent of the economic context. We deliberately analysed 
high levels of VCS to explore implications of high legume shares not yet observed in conventional 
farms. Such legume shares make farm profit more dependent on subsidies, which is a doubtful strategy 
at a time where high subsidies under the CAP are questioned. Indeed, a considerable increase in the 
production of legumes on livestock farms requires implementing a set of measures that combine reg-
ulatory constraints, couple support and investment aid to sectors promoting these crops such as the 
emerging sector of GMO-free feed. 

Finally, our study concerns two representative case studies in prominent dairy production areas and 
gives first insights into the interactions of two key policy measures affecting legume production in 
Europe. Clearly, a larger sample of farms of different types and from different regions is needed to 
generalize our findings. However, the strength of our analysis lies in the nature of the sensitivity anal-
ysis carried out. It considers the market environment of main substitutes of legumes at farm level and 
thus considers different economic contexts. In addition, it would also be possible to carry out a sensi-
tivity analysis on the yields of legumes, which vary more than those of other crops (Cernay et al., 2015).  
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5.4.8 Appendices 

Table 3: Results of main indicators (median and range) used in the integrated assessment, for selected scenarios, per farm and implementation of the Nitrates 
Directive (ND) 

 French farm - French ND  French farm - German ND  German farm – German ND 

   VCS0 VCS100 VCS150 VCS200 VCS300  VCS0 VCS100 VCS150 VCS200 VCS300  VCS0 VCS100 VCS150 VCS200 VCS300 

Share of legumes 
 

5% 
(5- 35) 

10% 
(5- 46) 

17% 
(5- 48) 

26% 
(5-49) 

34% 
(5- 59) 

 5% 
(5- 48) 

10% 
(5- 49) 

22% 
(5- 53) 

34% 
(5- 58) 

45% 
(5- 63) 

 5% 
(5- 44) 

7% 
(5- 45) 

10% 
(5- 59) 

18% 
(5- 59) 

28% 
(5- 62) 

Grain legumes  5% 7% 15% 24% 32%  5% 6% 20% 33% 38%  5% 5% 8% 18% 26% 
                   

Protein self-sufficiency  
67% 

(58- 86) 
69% 

(58- 89) 
71% 

(58- 91) 
71% 

(58- 92) 
71% 

(58- 92)  68% 
(58- 90) 

68% 
(54- 92) 

71% 
(58- 92) 

71% 
(56- 92) 

74% 
(59- 92)  60% 

(54- 88) 
61% 

(49- 89) 
61% 

(54- 90) 
65% 

(49- 91) 
71% 

(54- 92) 

                   
Manure on legumes  
(m3.ha of legumes-1)  

0 
(0- 10) 

0 
(0- 15) 

0 
(0- 15) 

0 
(0- 15) 

11 a 

(0- 15)  0 
(0- 19) 

0 
(0- 20) 

0 
(0- 21) 

10 
(0- 21) 

14 
(0- 21)  0 

(0- 14) 
0 

(0- 14) 
0 

(0- 20) 
0 

(0- 20) 
0 

(0- 21) 
                   
Synthetic fertiliser (kg.ha-

1)  
125 

(35- 131) 
105 

(23- 131) 
74 

(22- 131) 
42 

(21- 131) 
34 

(11- 131)  127 
(22- 134) 

108 
(21- 136) 

52 
(17- 134) 

34 
(13- 136) 

24 
(8- 134)  183 

(34- 185) 
170 

(29- 188) 
157 

(18- 185) 
116 

(17- 189) 
61 

(11- 184) 
                   

Farm Profit  
(k€.ha-1) 

 

1.13 
(1.05 -

1.25) 

1.14 
(1.07 -

1.27) 

1.15 
(1.09 -

1.25) 

1.16 
(1.10 -

1.26) 

1.17 
(1.13 -

1.26) 
 

1.14 
(1.05 -

1.27) 

1.15 
(1.08 -

1.29) 

1.15 
(1.09 -

1.27) 

1.16 
(1.11 -

1.27) 

1.18 
(1.14 -

1.27) 
 

1.39 
(1.25-
1.64) 

1.39 
(1.27-
1.61) 

1.40 
(1.29-
1.63) 

1.41 
(1.31-
1.62) 

1.43 
(1.34-
1.63) 

                   

Share of VCS in profit  
0.0% 
(0- 0) 

0.6% 
(0.3- 2.4) 

1.4% 
(0.4- 3.7) 

2.9% 
(0.6- 5.0) 

5.7% 
(0.9- 9.1)  0.0% 

(0- 0) 
0.6% 

(0.3- 2.5) 
1.9% 

(0.4- 4.0) 
3.8% 

(0.6- 5.8) 
7.4% 

(0.8- 9.6)  0.0% 
(0- 0) 

0.4% 
(0.3- 2.1) 

0.8% 
(0.4- 4.1) 

1.9% 
(0.6- 5.5) 

4.4% 
(0.8- 8.5) 

                   
N leaching 
(kgN.ha-1) 

 36 
(22-41) 

36 
(19-41) 

36 
(19-41) 

35 
(19-41) 

30 
(18-41) 

 36 
(20-39) 

36 
(19-42) 

34 
(19-48) 

34 
(19-48) 

34 
(17-52) 

 20 
(7-23) 

19 
(7-23) 

19 
(6-31) 

19 
(6-32) 

19 
(6-36) 

                   

GWP 

(kgCO2eq.kg milk-1) 
 

1.25 
(1.06 -

1.69) 

1.21 
(1.04 -

1.69) 

1.21 
(1.03 -

1.69) 

1.20 
(1.02 -

1.69) 

1.16 
(1.01-
1.65) 

 
1.23 

(1.05 -
1.70) 

1.23 
(1.04 -

1.81) 

1.22 
(1.03 -

1.70) 

1.22 
(1.02 -

1.77) 

1.21 
(1.02 -

1.68) 
 

1.37 
(1.06 -

1.68) 

1.30 
(1.05 -

1.70) 

1.29 
(1.04 -

1.71) 

1.29 
(1.04 -

1.69) 

1.26 
(1.02 -

1.71) 
a Manure spread only on alfalfa; The minimum and maximum values are in brackets;  
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Figure 2: Integrated assessment of farms, across specific scenarios and Nitrates Directive (ND) implementation. 
 

The chart compares economic and environmental indicators across different levels of VCS for each farm and implementation of the ND. For each indicator, the upper boundary is 
defined by the maximum value observed in the study, across all case studies and scenarios. The minimum value is set zero for all indicators. 
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6 Conclusion 
Against the background of the ambitious goal of the EU to achieve an increasing uptake of ecological 
approaches in its farming sector, assessing the effects of such a transition on the economic viability of 
and production of food, feed and fibre by farms is of crucial importance. The aim of this deliverable 
was therefore to assess and compare technical-economic farm performance across the EU depending 
on the degree of ecological approaches adopted by farms, and explore drivers affecting their perfor-
mance.  

In order to accomplish this, the wide variety of farm types and biophysical, socio-economic and politi-
cal framework conditions present in the EU, needed to be considered. This required an approach, al-
lowing to consider regional specifics, while still permitting comparisons between different regions and 
countries. The deliverable thus consists of several academic papers, focussing on a range of different 
case studies, applying a wide range of methods, which can most generally be divided into empirical 
econometric or statistical approaches and bio-economic models. At the same time, all academic papers 
follow a similar structure and include some common elements in terms of the applied methods, in 
particular a set of common indicators of technical-economic farm performance was implemented in 
several papers. Various approaches to differentiate farms according to the degree of ecological ap-
proaches adopted were explored, including the LIFT farm typology developed in WP1 and other strat-
egies. 

Overall, our results show that the wide variety of farm types and biophysical, socio-economic and po-
litical framework conditions present in the EU matter: results of comparing technical-economic farm 
performance depending on the degree of ecological approaches adopted, as well as with respect to 
drivers of farm technical-economic performance, are heterogenous and vary between the different 
analyses. The effects of a further increase in the uptake of ecological approaches in EU agriculture on 
technical-economic farm performance are thus also likely to have heterogenous effects on farms. Nev-
ertheless, our results illustrate some tendencies, visible across several analyses as well. For example, 
in cases where farms associated with a higher degree of ecological approaches are more profitable 
compared to more conventional farms, this advantage in profitability is mostly only present, if subsi-
dies are considered. Additionally, farms associated with a higher degree of ecological approaches in 
most analyses tend to be more productive in their use of intermediate inputs and less productive in 
terms of most other inputs compared to more conventional farms. However, even these very general 
tendencies stated here need to be considered with care, as they do not always hold across all case 
studies. 

Results are also heterogenous in terms of drivers of farm performance like possible policy measures, 
aimed at supporting an ecological transition: for example, the results show mixed effects of subsidies 
on technical-economic performance on farms with a different degree of ecological approaches. There-
fore, this heterogeneity also needs to be considered by policy makers and can most likely best be ad-
dressed by providing a policy framework, which provides the necessary flexibility to adjust policy 
measures to region-specific framework conditions in order to foster economic viability of farms in the 
context of an ecological transition of EU agriculture. 

In the end, economic performance is only one of the considered performance dimensions within LIFT. 
While some papers in this deliverable have already integrated the technical-economic and environ-
mental dimension of farm performance jointly, private-social performance as well as employment ef-
fects at the farm level need to be considered as well, in order to arrive at a holistic assessment of farm 
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performance. Task 5.1 will therefore in a next step undertake an integrative assessment of these per-
formance dimensions, uncovering associated trade-offs and synergies of an increasing uptake of eco-
logical approaches in the EU farming sector. Finally, WP6, in particular Task 6.2 and Task 6.3, will fur-
ther investigate the role of policies in the development of ecological agriculture. 

7 Deviations or delays 
None. 
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